Abstract

We report on room temperature gain-switched and Q-switched Fe:ZnSe lasers tunable over 3.60–5.15 µm pumped by radiation of an 2.94 µm Er:YAG laser. The maximum output energy was measured to be 5 mJ under 15 mJ of pump energy in gain-switched regime. We also demonstrated a mechanically Q-switched regime of oscillation of Fe:ZnSe lasers. This approach could be attractive for the development of high-energy short-pulse solid-state mid-IR systems operating over 3.6–5.2 µm spectral range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Fe2+:ZnSe passively Q-switched Ho3+-doped ZBLAN fiber laser around 3 μm

Jianfeng Li, Hongyu Luo, Lele Wang, Bo Zhai, Heping Li, and Yong Liu
Opt. Express 23(17) 22362-22370 (2015)

3.9–4.8 μm gain-switched lasing of Fe:ZnSe at room temperature

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov
Opt. Express 13(26) 10608-10615 (2005)

Fe2+:ZnSe and graphene Q-switched singly Ho3+-doped ZBLAN fiber lasers at 3 μm

Gongwen Zhu, Xiushan Zhu, Kaushik Balakrishnan, Robert A. Norwood, and N. Peyghambarian
Opt. Mater. Express 3(9) 1365-1377 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
    [Crossref]
  2. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
    [Crossref]
  3. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
    [Crossref]
  4. D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).
  5. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  6. J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
    [Crossref] [PubMed]
  7. V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
    [Crossref]
  8. A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
    [Crossref]
  9. T. V. Chang and O. R. Wood, “Optically pumped atmospheric‐pressure CO2 laser,” Appl. Phys. Lett. 21(1), 19–21 (1972).
    [Crossref]
  10. D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).
  11. M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, and Y. K. Skasyrsky, “High-energy thermoelectrically cooled Fe:ZnSe laser tunable over 3.75-4.82 μm,” Opt. Lett. 43(3), 623–626 (2018).
    [Crossref] [PubMed]
  12. N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
    [Crossref]
  13. A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
    [Crossref] [PubMed]
  14. S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
    [Crossref]
  15. V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).
  16. F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).
  17. V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).
  18. B. Cole, L. Goldberg, and A. D. Hays, “High-efficiency 2 μm Tm:YAP laser with a compact mechanical Q-switch,” Opt. Lett. 43(2), 170–173 (2018).
    [Crossref] [PubMed]
  19. J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
    [Crossref]
  20. M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
    [Crossref]
  21. N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
    [Crossref]
  22. J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
    [Crossref]

2018 (3)

2016 (1)

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

2015 (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

2014 (1)

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
[Crossref]

2012 (2)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

2010 (2)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

2007 (1)

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

2006 (1)

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

2005 (1)

2004 (1)

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1993 (1)

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

1990 (1)

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

1972 (1)

T. V. Chang and O. R. Wood, “Optically pumped atmospheric‐pressure CO2 laser,” Appl. Phys. Lett. 21(1), 19–21 (1972).
[Crossref]

1964 (1)

J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
[Crossref]

Akimov, V. A.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Atwood, B.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Badikov, D. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Badikov, V. V.

Ben-Zvi, I.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Berry, P. A.

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
[Crossref]

Bragagna, T.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Breguet, J.

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Chang, T. V.

T. V. Chang and O. R. Wood, “Optically pumped atmospheric‐pressure CO2 laser,” Appl. Phys. Lett. 21(1), 19–21 (1972).
[Crossref]

Cole, B.

Cole, B. J.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Dormidonov, A. E.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Evans, J. W.

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
[Crossref]

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Fedorov, V. V.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Firsov, K. N.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Forrer, M.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

Frenz, M.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

Frolov, M. P.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, and Y. K. Skasyrsky, “High-energy thermoelectrically cooled Fe:ZnSe laser tunable over 3.75-4.82 μm,” Opt. Lett. 43(3), 623–626 (2018).
[Crossref] [PubMed]

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Galecki, L.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Gallian, A.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
[Crossref] [PubMed]

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Gavrishchuk, E. M.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Goldberg, L.

B. Cole, L. Goldberg, and A. D. Hays, “High-efficiency 2 μm Tm:YAP laser with a compact mechanical Q-switch,” Opt. Lett. 43(2), 170–173 (2018).
[Crossref] [PubMed]

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Gross, S.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hays, A. D.

Heinrich, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Hough, N.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Ikonnikov, V. B.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Joshi, C.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Karki, K.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Kasprzak, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Kasturi, A.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Kazantsev, S. Yu.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Kernal, J.

Kim, C.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Kononov, I. G.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Konz, F.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

Korostelin, Y. V.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, and Y. K. Skasyrsky, “High-energy thermoelectrically cooled Fe:ZnSe laser tunable over 3.75-4.82 μm,” Opt. Lett. 43(3), 623–626 (2018).
[Crossref] [PubMed]

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

Korostelin, Yu. V.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Kotereva, T. V.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Kozlovsky, V. I.

M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, Y. P. Podmar’kov, and Y. K. Skasyrsky, “High-energy thermoelectrically cooled Fe:ZnSe laser tunable over 3.75-4.82 μm,” Opt. Lett. 43(3), 623–626 (2018).
[Crossref] [PubMed]

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Landman, A. I.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Limkrailassiri, K.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Luthy, W. A. R.

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Maciejewska, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Martyshkin, D. V.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Milanovic, V.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Mirov, M.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Mirov, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Mirov, S. B.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

J. Kernal, V. V. Fedorov, A. Gallian, S. B. Mirov, and V. V. Badikov, “3.9-4.8 microm gain-switched lasing of Fe:ZnSe at room temperature,” Opt. Express 13(26), 10608–10615 (2005).
[Crossref] [PubMed]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Moskalev, I.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Myoung, N.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

Nettleton, J. E.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Nyga, P.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Ostroumov, V. G.

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Pichola, W.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Pigeon, J. J.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Podmar’kov, Y. P.

Podmar’kov, Yu. P.

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Podmarkov, Y. P.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

Polushkin, V. G.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

Romano, V.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

Sanford, J. R.

J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
[Crossref]

Savin, D. V.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Schepler, K. L.

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
[Crossref]

Schnell, S.

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Shcherbakov, I. A.

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Skasyrsky, Y. K.

Skorczakowski, M.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Su, Y.

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

Swiderski, J.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Timofeeva, N. A.

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Tochitsky, S. Ya.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Tovey, D.

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

Vasilyev, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Voronov, A. A.

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

Weber, H. P.

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

Wenger, L. E.

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

Wenzel, J. H.

J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
[Crossref]

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Wolga, G. J.

J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
[Crossref]

Wood, O. R.

T. V. Chang and O. R. Wood, “Optically pumped atmospheric‐pressure CO2 laser,” Appl. Phys. Lett. 21(1), 19–21 (1972).
[Crossref]

Zajac, A.

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

A. Zajac, M. Skorczakowski, J. Swiderski, and P. Nyga, “Electrooptically Q-switched mid-infrared Er:YAG laser for medical applications,” Opt. Express 12(21), 5125–5130 (2004).
[Crossref] [PubMed]

Zakrevskiy, A.

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Appl. Phys. B (1)

A. E. Dormidonov, K. N. Firsov, E. M. Gavrishchuk, V. B. Ikonnikov, S. Yu. Kazantsev, I. G. Kononov, T. V. Kotereva, D. V. Savin, and N. A. Timofeeva, “High-efficiency room-temperature ZnSe:Fe2+ laser with a high pulsed radiation energy,” Appl. Phys. B 122(8), 211 (2016).
[Crossref]

Appl. Phys. Lett. (1)

T. V. Chang and O. R. Wood, “Optically pumped atmospheric‐pressure CO2 laser,” Appl. Phys. Lett. 21(1), 19–21 (1972).
[Crossref]

IEEE J. Quantum Electron. (4)

S. Schnell, V. G. Ostroumov, J. Breguet, W. A. R. Luthy, H. P. Weber, and I. A. Shcherbakov, “Efficient acousto-optic Q switching of Er:YSGG lasers at 2.79-mm wavelength,” IEEE J. Quantum Electron. 26(6), 1111 (1990).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

V. V. Fedorov, S. B. Mirov, A. Gallian, D. V. Badikov, M. P. Frolov, Yu. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Yu. P. Podmar’kov, V. A. Akimov, and A. A. Voronov, “3.77–5.05-mm Tunable Solid-State Lasers Based on Fe2+-Doped ZnSe Crystals Operating at Low and Room Temperatures,” IEEE J. Quantum Electron. 42(9), 907–917 (2006).
[Crossref]

J. W. Evans, P. A. Berry, and K. L. Schepler, “A Passively Q-Switched, CW-Pumped Fe:ZnSe Laser,” IEEE J. Quantum Electron. 50(3), 204–209 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and S. Vasilyev, “Progress in Mid-IR Lasers Based on Cr and Fe Doped II-VI Chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1601719 (2015).
[Crossref]

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

J. Appl. Phys. (1)

J. R. Sanford, J. H. Wenzel, and G. J. Wolga, “Giant Pulse Laser Action and Pulse Width Narrowing in Neodymium-Doped Borate Glass,” J. Appl. Phys. 35(11), 3422–3423 (1964).
[Crossref]

J. Lumin. (2)

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

N. Myoung, V. V. Fedorov, S. B. Mirov, and L. E. Wenger, “Temperature and concentration quenching of mid-IR photoluminescence in iron doped ZnSe and ZnS laser crystals,” J. Lumin. 132(3), 600–606 (2012).
[Crossref]

Laser Photonics Rev. (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ Doped Mid-IR Laser Materials,” Laser Photonics Rev. 4(1), 21–41 (2010).
[Crossref]

Laser Phys. Lett. (1)

M. Skorczakowski, J. Swiderski, W. Pichola, P. Nyga, A. Zajac, M. Maciejewska, L. Galecki, J. Kasprzak, S. Gross, A. Heinrich, and T. Bragagna, “Mid-infrared Q-switched Er:YAG laser for medical applications,” Laser Phys. Lett. 7(7), 498–504 (2010).
[Crossref]

Opt. Commun. (1)

F. Konz, M. Frenz, V. Romano, M. Forrer, and H. P. Weber, “Active and passive Q-switching of a 2.79 mm Er:Cr:YSGG laser,” Opt. Commun. 103, 298–304 (1993).

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

V. Milanović, A. Kasturi, B. Atwood, Y. Su, K. Limkrailassiri, J. E. Nettleton, L. Goldberg, B. J. Cole, and N. Hough, “Compact MEMS mirror based Q-switch module for pulse-on-demand laser range finders,” Proc. SPIE 9375, 93750H (2015).

V. A. Akimov, M. P. Frolov, Y. V. Korostelin, V. I. Kozlovsky, A. I. Landman, Y. P. Podmarkov, V. G. Polushkin, and A. A. Voronov, “2.94 μm Er:YAG Q-switched laser with FE2+: ZnSe passive shutter,” Proc. SPIE 6610, 661008 (2007).

Other (2)

D. Tovey, J. J. Pigeon, S. Ya. Tochitsky, I. Ben-Zvi, C. Joshi, D. Martyshkin, V. Fedorov, K. Karki, and S. Mirov, “CO2 Laser Optically Pumped by a Tunable 4.3 µm Source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2019) (submitted).

D. V. Martyshkin, V. V. Fedorov, M. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, A. Zakrevskiy, and S. B. Mirov, “High power (9.2 W) CW 4.15 μm Fe: ZnSe laser,” in Conference on Lasers and Electro-Optics(CLEO), OSA Technical Digest (online), paper STh1L.6 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Basic scheme of mechanically Q-switched Er:YAG laser.
Fig. 2
Fig. 2 Temporal profiles of the mechanically Q-switched Er:YAG laser for different pump energies and rotation rates of the back mirror.
Fig. 3
Fig. 3 (a) The output energy of Q-switched Er:YAG laser versus pump energy; (b) Er:YAG laser output beam profile at 40 J pump and 12mJ output energies.
Fig. 4
Fig. 4 Optical scheme of gain-switched Fe:ZnSe laser: OC- output coupler; DM- dichroic mirror; SM- pump steering mirror; T- intracavity lens telescope; G diffraction grating; Fp focusing lens.
Fig. 5
Fig. 5 (a) A characteristic tuning curve of the RT gain-switched Fe:ZnSe laser under 11 mJ pump energy and ambient condition (i), (ii) represents the same tuning curve of Fe:ZnSe laser with cavity purged with N2; (b) Fe:ZnSe laser linewidth at 4098 nm.
Fig. 6
Fig. 6 Temporal (a) and spatial (b) profiles of the Fe:ZnSe pulse near 4300 nm.
Fig. 7
Fig. 7 Optical scheme of Q-switched Fe:ZnSe laser: OC- output coupler; BM- back mirror DM- dichroic mirror; SM- pump steering mirror.

Metrics