Abstract

Coherent optical reception promises performance gains for a wide range of telecom applications and photonic sensing. However, the practical implementation and the particular realization of homodyne detection is by no means straight-forward. Local oscillator requirements and polarization management need to be cost-effectively supported for accurate signal detection at high sensitivity, preferably without relying on digital processing resources. Towards this direction we propose a conceptually simple, laser-based homodyne receiver. We exploit the injection locking of a pair of externally modulated lasers that simultaneously serve as optically synchronized local oscillators and photodetectors in a polarization-diversity analogue coherent receiver arrangement. We demonstrate signal detection at 2.5 Gb/s over an optical budget of 35 dB and a dynamic range of >20 dB. Long-term measurements over field-installed fiber confirm the correct operation independent of the polarization state of light. Stability considerations for the injection locking process are drawn in view of even higher loss budgets.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals

Selwan K. Ibrahim, Stylianos Sygletos, Ruwan Weerasuriya, and Andrew D. Ellis
Opt. Express 19(9) 8320-8326 (2011)

10 Gb/s long-reach PON system based on directly modulated transmitters and simple polarization independent coherent receiver

M. Rannello, M. Artiglia, M. Presi, and E. Ciaramella
Opt. Express 25(15) 17841-17846 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Altabas, G. Silva Valdecasa, M. Didriksen, J. A. Lazaro, I. Garces, I. Tafur Monroy, and J. B. Jensen, “Real-time 10Gbps Polarization Independent Quasicoherent Receiver for NG-PON2 Access Networks,” in Proc. Opt. Fiber Comm. Conf., San Diego, United States, Mar. 2018, Th1A.3.
    [Crossref]
  2. M. S. Erkilinc, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of Low Complexity Coherent Receivers for UDWDM-PONs (λ-to-the-User),” J. Lightwave Technol. 36(16), 3453–3464 (2018).
    [Crossref]
  3. S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
    [Crossref]
  4. A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
    [Crossref]
  5. M. Artiglia, M. Presi, F. Bottoni, M. Rannello, and E. Ciaramella, “Polarization-Independent Coherent Real-Time Analog Receiver for PON Access Systems,” J. Lightwave Technol. 34(8), 2027–2033 (2016).
    [Crossref]
  6. X. Chen, D. Che, A. Li, J. He, and W. Shieh, “Signal-carrier interleaved optical OFDM for direct detection optical communication,” Opt. Express 21(26), 32501–32507 (2013).
    [Crossref] [PubMed]
  7. Z. Feng, L. Xu, Q. Wu, M. Tang, S. Fu, W. Tong, and D. Liu, “Large-Capacity Optical Access Network Utilizing Multicore Fibre and Self-Homodyne Coherent Detection,” in Proc. Opt. Fiber Comm. Conf., Los Angeles, United States, Mar. 2017, Th1K.2.
    [Crossref]
  8. S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
    [Crossref]
  9. K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
    [Crossref]
  10. B. Schrenk, “Injection-Locked Coherent Reception Through Externally Modulated Laser,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–12 (2018).
    [Crossref]
  11. B. Schrenk and F. Karinou, “A Coherent Homodyne TO-Can Transceiver as Simple as an EML,” J. Lightwave Technol. 37(2), 555–561 (2019).
    [Crossref]
  12. B. Schrenk and F. Karinou, “Polarization-Immune Coherent Homodyne Receiver Enabled by a Tandem of TO-can EMLs,” in Proc. Europ. Conf. Opt. Comm., Rome, Italy, Sep. 2018, We4G.3.
    [Crossref]
  13. M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New Polarization Multiplexed Externally Modulated Laser PIC,” in Proc. Europ. Conf. Opt. Comm., Rome, Italy, Sep. 2018, Mo4C.2.
    [Crossref]
  14. R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
    [Crossref]
  15. B. Glance, “Polarization Independent Coherent Optical Receiver,” J. Lightwave Technol. 5(2), 274–276 (1987).
    [Crossref]
  16. F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
    [Crossref]
  17. D. S. Wu, R. Slavik, G. Marra, and D. J. Richardson, “Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization,” J. Lightwave Technol. 31(14), 2287–2295 (2013).
    [Crossref]
  18. R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
    [Crossref]
  19. “40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification”, Recommendation ITU-T G.989.2 (2014).

2019 (1)

2018 (3)

M. S. Erkilinc, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of Low Complexity Coherent Receivers for UDWDM-PONs (λ-to-the-User),” J. Lightwave Technol. 36(16), 3453–3464 (2018).
[Crossref]

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

B. Schrenk, “Injection-Locked Coherent Reception Through Externally Modulated Laser,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–12 (2018).
[Crossref]

2016 (1)

2013 (2)

2010 (2)

S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
[Crossref]

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[Crossref]

1991 (2)

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

1987 (2)

B. Glance, “Polarization Independent Coherent Optical Receiver,” J. Lightwave Technol. 5(2), 274–276 (1987).
[Crossref]

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

1985 (1)

F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Artiglia, M.

Auracher, F.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Balakier, K.

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

Bayvel, P.

Bhardwaj, A.

Bottoni, F.

Che, D.

Chen, X.

Ciaramella, E.

Coldren, L.

D’Ottavi, A.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

Davis, A. W.

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

Ebberg, A.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Erkilinc, M. S.

Fice, M. J.

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

Gaukel, G.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Glance, B.

B. Glance, “Polarization Independent Coherent Optical Receiver,” J. Lightwave Technol. 5(2), 274–276 (1987).
[Crossref]

He, J.

Hui, R.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

Jacobsen, G.

F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Johansson, L.

Karinou, F.

Killey, R. I.

King, J. P.

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

Lavery, D.

Li, A.

Marra, G.

Mecozzi, A.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

Morgensen, F.

F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Narikawa, S.

S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
[Crossref]

Noe, R.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Noll, B.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Olesen, H.

F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

Pettitt, M. J.

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

Ponnampalam, L.

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

Presi, M.

Rannello, M.

Renaud, C. C.

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

Richardson, D. J.

Ristic, S.

Rodler, H.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Rodwell, M.

Sakurai, N.

S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
[Crossref]

Sanjoh, H.

S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
[Crossref]

Savory, S. J.

Schrenk, B.

B. Schrenk and F. Karinou, “A Coherent Homodyne TO-Can Transceiver as Simple as an EML,” J. Lightwave Technol. 37(2), 555–561 (2019).
[Crossref]

B. Schrenk, “Injection-Locked Coherent Reception Through Externally Modulated Laser,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–12 (2018).
[Crossref]

Seeds, A. J.

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

Shi, K.

Shieh, W.

Slavik, R.

Spano, P.

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

Thomsen, B. C.

Wittmann, J.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

Wright, S.

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

Wu, D. S.

IEEE J. Quantum Electron. (1)

F. Morgensen, H. Olesen, and G. Jacobsen, “Locking Conditions and Stability Properties for a Semiconductor Laser with External Light Injection,” IEEE J. Quantum Electron. 21(7), 784–793 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Balakier, L. Ponnampalam, M. J. Fice, C. C. Renaud, and A. J. Seeds, “Integrated Semiconductor Laser Optical Phase Lock Loops,” IEEE J. Sel. Top. Quantum Electron. 24(1), 1 (2018).
[Crossref]

B. Schrenk, “Injection-Locked Coherent Reception Through Externally Modulated Laser,” IEEE J. Sel. Top. Quantum Electron. 24(2), 1–12 (2018).
[Crossref]

IEICE Electron. Express (1)

S. Narikawa, H. Sanjoh, and N. Sakurai, “Coherent WDM-PON using heterodyne detection with transmitter-side polarization diversity,” IEICE Electron. Express 7(16), 1195–1200 (2010).
[Crossref]

J. Lightwave Technol. (8)

A. W. Davis, M. J. Pettitt, J. P. King, and S. Wright, “Phase Diversity Techniques for Coherent Optical Receivers,” J. Lightwave Technol. 5(4), 561–572 (1987).
[Crossref]

M. Artiglia, M. Presi, F. Bottoni, M. Rannello, and E. Ciaramella, “Polarization-Independent Coherent Real-Time Analog Receiver for PON Access Systems,” J. Lightwave Technol. 34(8), 2027–2033 (2016).
[Crossref]

B. Schrenk and F. Karinou, “A Coherent Homodyne TO-Can Transceiver as Simple as an EML,” J. Lightwave Technol. 37(2), 555–561 (2019).
[Crossref]

D. S. Wu, R. Slavik, G. Marra, and D. J. Richardson, “Direct Selection and Amplification of Individual Narrowly Spaced Optical Comb Modes Via Injection Locking: Design and Characterization,” J. Lightwave Technol. 31(14), 2287–2295 (2013).
[Crossref]

M. S. Erkilinc, D. Lavery, K. Shi, B. C. Thomsen, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of Low Complexity Coherent Receivers for UDWDM-PONs (λ-to-the-User),” J. Lightwave Technol. 36(16), 3453–3464 (2018).
[Crossref]

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittmann, and F. Auracher, “Comparison of Polarization Handling Methods in Coherent Optical Systems,” J. Lightwave Technol. 9(10), 1353–1366 (1991).
[Crossref]

B. Glance, “Polarization Independent Coherent Optical Receiver,” J. Lightwave Technol. 5(2), 274–276 (1987).
[Crossref]

S. Ristic, A. Bhardwaj, M. Rodwell, L. Coldren, and L. Johansson, “An Optical Phase-Locked Loop Photonic Integrated Circuit,” J. Lightwave Technol. 28(4), 526–538 (2010).
[Crossref]

J. Quantum Electron. (1)

R. Hui, A. D’Ottavi, A. Mecozzi, and P. Spano, “Injection Locking in Distributed Feedback Semiconductor Lasers,” J. Quantum Electron. 27(6), 1688–1695 (1991).
[Crossref]

Opt. Express (1)

Other (5)

Z. Feng, L. Xu, Q. Wu, M. Tang, S. Fu, W. Tong, and D. Liu, “Large-Capacity Optical Access Network Utilizing Multicore Fibre and Self-Homodyne Coherent Detection,” in Proc. Opt. Fiber Comm. Conf., Los Angeles, United States, Mar. 2017, Th1K.2.
[Crossref]

B. Schrenk and F. Karinou, “Polarization-Immune Coherent Homodyne Receiver Enabled by a Tandem of TO-can EMLs,” in Proc. Europ. Conf. Opt. Comm., Rome, Italy, Sep. 2018, We4G.3.
[Crossref]

M. Baier, F. M. Soares, T. Gaertner, A. Schoenau, M. Moehrle, and M. Schell, “New Polarization Multiplexed Externally Modulated Laser PIC,” in Proc. Europ. Conf. Opt. Comm., Rome, Italy, Sep. 2018, Mo4C.2.
[Crossref]

“40-Gigabit-capable passive optical networks 2 (NG-PON2): Physical media dependent (PMD) layer specification”, Recommendation ITU-T G.989.2 (2014).

J. A. Altabas, G. Silva Valdecasa, M. Didriksen, J. A. Lazaro, I. Garces, I. Tafur Monroy, and J. B. Jensen, “Real-time 10Gbps Polarization Independent Quasicoherent Receiver for NG-PON2 Access Networks,” in Proc. Opt. Fiber Comm. Conf., San Diego, United States, Mar. 2018, Th1A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Polarization-independent coherent homodyne receiver based on an injection-locked tandem-EML, (b) LO emission within the locking range of the data signal λS and (c) power- and SOP-dependent locking range resulting in areas of stable and unstable receiver operation.
Fig. 2
Fig. 2 Experimental setup for evaluation of the coherent receiver.
Fig. 3
Fig. 3 (a) Model for the received RF power as function of the input SOP. (b) Spread in received power for polarization-swept input. (c) EML locking stability.
Fig. 4
Fig. 4 (a) Received data spectrum under coherent homodyne and direct detection condition with lit and dark LO, respectively. (b) EVM performance and modulation efficiency for an incident polarization at 2α = 45° and 0° at an optical loss budget of 22 dB. (c) OFDM post-FEC data rate as function of the loss budget.
Fig. 5
Fig. 5 (a) Polarization transform over 40 km of field-deployed city fiber as acquired during long-term measurements. (b) EVM evolution over field-deployed fiber.
Fig. 6
Fig. 6 EVM penalty due to inclusion of an intradyne TM tributary in the summing process for (a) α = 0 and (b) 2α = 45°. (c) Coherent receiver robust to polarization-selective fading.
Fig. 7
Fig. 7 Instantaneous spectrum of the received electrical signal of the extinct TM polarization tributary during (a) drop and (b) raise of optical input power to the receiver, which responds through LO unlocking and locking, respectively. (c) Signal response and cut of the undesired intradyne TM data tributary during a large drop of the received optical power.

Metrics