Abstract

In this paper, we present a new method of point-by-point femtosecond inscription of fiber Bragg gratings (FBG) arrays of different configurations in a 7-core spun optical fiber. The possibility of FBGs inscription with predefined periods in individual fiber cores allowed us to realize: 1) longitudinal FBG arrays with identical or variable resonant wavelengths in all side cores, 2) longitudinal FBG arrays inscribed only in the central or in the selected side core, and 3) an FBG array in a transverse cross section of a fiber consisting of an FBG inscribed in the central and three side cores. Based on the proposed method, by enabling the inscription through the acrylate protective coating of the fiber, a vector bend sensor has been created. Implementation of this sensor has shown that bending radii less than 4 mm can be measured with a high precision using a single-channel interrogation scheme.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber

Kirill Bronnikov, Alexey Wolf, Sergey Yakushin, Alexandr Dostovalov, Olga Egorova, Sergey Zhuravlev, Sergey Semjonov, Stefan Wabnitz, and Sergey Babin
Opt. Express 27(26) 38421-38434 (2019)

Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule

A.V. Dostovalov, A.A. Wolf, A.V. Parygin, V.E. Zyubin, and S.A. Babin
Opt. Express 24(15) 16232-16237 (2016)

Two-dimensional vector bending sensor based on seven-core fiber Bragg gratings

Maoxiang Hou, Kaiming Yang, Jun He, Xizhen Xu, Shuai Ju, Kuikui Guo, and Yiping Wang
Opt. Express 26(18) 23770-23781 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
    [Crossref]
  2. F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
    [Crossref]
  3. M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
    [Crossref] [PubMed]
  4. K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
    [Crossref]
  5. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21(24), 2023–2025 (1996).
    [Crossref] [PubMed]
  6. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  7. S. J. Mihailov, C. W. Smelser, P. Lu, R. B. Walker, D. Grobnic, H. Ding, G. Henderson, and J. Unruh, “Fiber bragg gratings made with a phase mask and 800-nm femtosecond radiation,” Opt. Lett. 28(12), 995–997 (2003).
    [Crossref] [PubMed]
  8. A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
    [Crossref]
  9. G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
    [Crossref]
  10. S. Klute, R. G. Duncan, R. S. Fielder, G. W. Butler, J. H. Mabe, A. K. Sang, R. J. Seeley, and M. T. Raum, “Fiber-optic shape sensing and distributed strain measurements on a morphing chevron”, presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 Jan. 2006, p. 624.
    [Crossref]
  11. C. Waltermann, J. Koch, M. Angelmahr, J. Burgmeier, M. Thiel, and W. Schade, “Fiber-Optical 3D Shape Sensing,” in Planar Waveguides and other Confined Geometries, G. Marowsky, ed. (Springer-Verlag, 2015).
  12. P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).
  13. D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
    [Crossref]
  14. C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).
  15. V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
    [Crossref] [PubMed]
  16. R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
    [Crossref]
  17. C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
    [Crossref] [PubMed]
  18. M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
    [Crossref]
  19. G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
    [Crossref] [PubMed]
  20. C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.
  21. Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
    [Crossref]
  22. I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
    [Crossref] [PubMed]
  23. S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
    [Crossref]
  24. A. Donko, M. Beresna, Y. Jung, J. Hayes, D. J. Richardson, and G. Brambilla, “Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber,” Opt. Express 26(2), 2039–2044 (2018).
    [Crossref] [PubMed]
  25. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  26. A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
    [Crossref] [PubMed]
  27. R. J. Williams, C. Voigtländer, G. D. Marshall, A. Tünnermann, S. Nolte, M. J. Steel, and M. J. Withford, “Point-by-point inscription of apodized fiber Bragg gratings,” Opt. Lett. 36(15), 2988–2990 (2011).
    [Crossref] [PubMed]
  28. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
    [Crossref] [PubMed]
  29. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
    [Crossref] [PubMed]
  30. R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
    [Crossref] [PubMed]
  31. J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
    [Crossref] [PubMed]

2018 (4)

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

A. Donko, M. Beresna, Y. Jung, J. Hayes, D. J. Richardson, and G. Brambilla, “Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber,” Opt. Express 26(2), 2039–2044 (2018).
[Crossref] [PubMed]

2017 (4)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

2016 (3)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
[Crossref]

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (1)

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

2004 (2)

G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

2003 (2)

2000 (1)

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

1996 (1)

Aitchison, J. S.

Andrejco, M. J.

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Askins, C. G.

G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
[Crossref]

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Åslund, M. L.

Babin, S. A.

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
[Crossref] [PubMed]

Badmos, A.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Barrera, D.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

Barton, J. S.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Beresna, M.

Blanchard, P. M.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Bradley, K.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Brambilla, G.

Bubel, G. M.

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Budinski, V.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Burnett, J. G.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Callan, J. P.

Canning, J.

Ding, H.

Donko, A.

Donlagic, D.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Dostovalov, A. V.

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
[Crossref] [PubMed]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Feder, K. S.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Fernandes, L. A.

L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Finlay, R. J.

Flockhart, G. M. H.

Friebele, E. J.

G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
[Crossref]

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Fuerbach, A.

Fukuda, T.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Gander, M. J.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Gasulla, I.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

Glezer, E. N.

Greenaway, A. H.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Grenier, J. R.

Grobnic, D.

Groothoff, N.

Gross, S.

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

Haque, M.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Hayes, J.

Henderson, G.

Her, T.-H.

Herman, P. R.

L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
[Crossref] [PubMed]

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Hervás, J.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Ho, S.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Huang, L.

Itoh, K.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Jackson, S. D.

Jones, J. D. C.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Jovanovic, N.

Jung, Y.

Kelemen, L.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Ko, W.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Kremp, T.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Kudelko, D. J.

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Lee, K. K. C.

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

Li, T.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Li, Y.

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Lu, P.

Luo, X.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

MacPherson, W. N.

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Mazur, E.

McBride, R.

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Mihailov, S. J.

Miller, G. A.

G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
[Crossref]

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Milosavljevic, M.

Monberg, E.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Moore, J. P.

Mou, C.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Najdovski, Z.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Nemanja, N.

Nolte, S.

Ormos, P.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Ortiz, R.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Osellame, R.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Parygin, A. V.

Patel, R. V.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
[Crossref]

Peele, J. R.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Qi, P.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Ren, H.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Richardson, D. J.

Rogge, M. D.

Sales, S.

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

D. Barrera, I. Gasulla, and S. Sales, “Multipoint two-dimensional curvature optical fiber sensor based on a nontwisted homogeneous four-core fiber,” J. Lightwave Technol. 33(12), 2445–2450 (2015).
[Crossref]

Schaffer, C. B.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Shi, C.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Sima, F.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Simoff, D. A.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Skvortsov, M. I.

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

Smelser, C. W.

Smith, G. N.

Song, S.

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

Steel, M. J.

Sugioka, K.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Sun, Q.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Sun, Z.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Taunay, T. F.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Thomas, J.

Tünnermann, A.

Unruh, J.

Vázquez, R. M.

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Voigtländer, C.

Wabnitz, S.

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

Walker, R. B.

Wang, C.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Wasserman, L. R.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Watanabe, W.

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Westbrook, P. S.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Williams, R. J.

Withford, M. J.

Wolf, A. A.

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
[Crossref] [PubMed]

Wright, B. M.

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

Wu, H.

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

Xu, R.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
[Crossref]

Yakushin, S. S.

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

Yan, M. F.

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Yan, Z.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Yurkewich, A.

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
[Crossref]

Zhang, J.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Zhang, L.

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

G. M. H. Flockhart, W. N. MacPherson, J. S. Barton, J. D. C. Jones, L. Zhang, and I. Bennion, “Two-axis bend measurement with Bragg gratings in multicore optical fiber,” Opt. Lett. 28(6), 387–389 (2003).
[Crossref] [PubMed]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Zyubin, V. E.

Electron. Lett. (2)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

M. J. Gander, W. N. MacPherson, R. McBride, J. D. C. Jones, L. Zhang, I. Bennion, P. M. Blanchard, J. G. Burnett, and A. H. Greenaway, “Bend measurement using Bragg gratings in multicore fibre,” Electron. Lett. 36(2), 120–121 (2000).
[Crossref]

Furukawa Electr. Rev. (1)

P. S. Westbrook, K. S. Feder, T. Kremp, W. Ko, H. Wu, E. Monberg, D. A. Simoff, K. Bradley, and R. Ortiz, “Distributed sensing over meter lengths using twisted multicore optical fiber with continuous Bragg gratings,” Furukawa Electr. Rev. 48, 26–32 (2017).

IEEE Robot. Autom. Lett. (1)

R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors,” IEEE Robot. Autom. Lett. 1(2), 1052–1059 (2016).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

C. Shi, X. Luo, P. Qi, T. Li, S. Song, Z. Najdovski, T. Fukuda, and H. Ren, “Shape sensing techniques for continuum robots in minimally invasive surgery: a survey,” IEEE Trans. Biomed. Eng. 64(8), 1665–1678 (2017).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

Lab Chip (1)

M. Haque, K. K. C. Lee, S. Ho, L. A. Fernandes, and P. R. Herman, “Chemical-assisted femtosecond laser writing of lab-in-fibers,” Lab Chip 14(19), 3817–3829 (2014).
[Crossref] [PubMed]

MRS Bull. (1)

K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
[Crossref]

Nanophotonics (2)

S. Gross and M. J. Withford, “Ultrafast-laser-inscribed 3D integrated photonics: Challenges and emerging applications,” Nanophotonics 4(3), 332–352 (2015).
[Crossref]

F. Sima, K. Sugioka, R. M. Vázquez, R. Osellame, L. Kelemen, and P. Ormos, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics 7(3), 613–634 (2018).
[Crossref]

Opt. Express (6)

A. Donko, M. Beresna, Y. Jung, J. Hayes, D. J. Richardson, and G. Brambilla, “Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber,” Opt. Express 26(2), 2039–2044 (2018).
[Crossref] [PubMed]

M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
[Crossref] [PubMed]

A. V. Dostovalov, A. A. Wolf, A. V. Parygin, V. E. Zyubin, and S. A. Babin, “Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule,” Opt. Express 24(15), 16232–16237 (2016).
[Crossref] [PubMed]

N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
[Crossref] [PubMed]

J. P. Moore and M. D. Rogge, “Shape sensing using multi-core fiber optic cable and parametric curve solutions,” Opt. Express 20(3), 2967–2973 (2012).
[Crossref] [PubMed]

R. J. Williams, N. Jovanovic, G. D. Marshall, G. N. Smith, M. J. Steel, and M. J. Withford, “Optimizing the net reflectivity of point-by-point fiber Bragg gratings: the role of scattering loss,” Opt. Express 20(12), 13451–13456 (2012).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

S. S. Yakushin, A. A. Wolf, A. V. Dostovalov, M. I. Skvortsov, S. Wabnitz, and S. A. Babin, “A study of bending effect on the femtosecond-pulse inscribed fiber Bragg gratings in a dual-core fiber,” Opt. Fiber Technol. 43, 101–105 (2018).
[Crossref]

Opt. Lett. (5)

Proc. SPIE (3)

G. A. Miller, C. G. Askins, and E. J. Friebele, “Shape sensing using distributed fiber optic strain measurements,” Proc. SPIE 5502, 528–531 (2004).
[Crossref]

C. Wang, Z. Yan, Q. Sun, Z. Sun, C. Mou, J. Zhang, A. Badmos, and L. Zhang, “Fibre Bragg gratings fabrication in four core fibres,” Proc. SPIE 9886, 98860H (2016).

Y. Li, G. M. Bubel, D. J. Kudelko, M. F. Yan, and M. J. Andrejco, “A novel twin-core fiber grating sensor system and its applications,” Proc. SPIE 7677, 76770D (2010).
[Crossref]

Quantum Electron. (1)

A. A. Wolf, A. V. Dostovalov, S. Wabnitz, and S. A. Babin, “Femtosecond writing of refractive index structures in multimode and multicore optical fibres,” Quantum Electron. 48(12), 1128–1131 (2018).
[Crossref]

Sci. Rep. (1)

I. Gasulla, D. Barrera, J. Hervás, and S. Sales, “Spatial Division Multiplexed Microwave Signal processing by selective grating inscription in homogeneous multicore fibers,” Sci. Rep. 7(1), 41727 (2017).
[Crossref] [PubMed]

Sensors (Basel) (1)

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Other (3)

C. G. Askins, T. F. Taunay, G. A. Miller, B. M. Wright, J. R. Peele, L. R. Wasserman, and E. J. Friebele, “Inscription of fiber Bragg gratings in multicore fiber,” in Nonlinear Photonoics (Optical Society of America, 2007), paper JWA39.

S. Klute, R. G. Duncan, R. S. Fielder, G. W. Butler, J. H. Mabe, A. K. Sang, R. J. Seeley, and M. T. Raum, “Fiber-optic shape sensing and distributed strain measurements on a morphing chevron”, presented at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9–12 Jan. 2006, p. 624.
[Crossref]

C. Waltermann, J. Koch, M. Angelmahr, J. Burgmeier, M. Thiel, and W. Schade, “Fiber-Optical 3D Shape Sensing,” in Planar Waveguides and other Confined Geometries, G. Marowsky, ed. (Springer-Verlag, 2015).

Supplementary Material (1)

NameDescription
» Visualization 1       In this video, longitudinal FBG array is inscribed in the side cores of 7-core spun optical fiber by femtosecond IR laser pulses.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Focusing of fs laser pulses during point-by-point FBGs inscription by drawing a coated optical fiber through a channel of transparent ferrule.
Fig. 2
Fig. 2 Fiber-optic scheme for interrogation of individual cores of a 7-core spun fiber.
Fig. 3
Fig. 3 (a) Schematic representation of single FBG inscribed in the side core of a 7-core spun fiber. (b) The cylindrical surface of the FBG-containing section of the fiber put on the plane.
Fig. 4
Fig. 4 The state diagram of the fs laser pulse picker and the velocity profile of the fiber when longitudinal FBG array is inscribed in side cores of 7-core spun fiber. v1… v6 denote different velocities defining the periods of the FBG structures Λ1… Λ6.
Fig. 5
Fig. 5 Cleavage of the 7-core spun optical fiber made in the FBG-containing section.
Fig. 6
Fig. 6 (a) Reflection spectra of the longitudinal FBG array with fixed period Λ = 1.07 μm inscribed in different cores of the 7-core spun optical fiber in the single-pass procedure. (b) Transmission spectrum measured for FBG inscribed in core 1.
Fig. 7
Fig. 7 Reflection spectra of the longitudinal FBG array with a variable period (Λ = Λ1, …, Λ6) inscribed in different side cores of the 7-core spun optical fiber in the single-pass procedure.
Fig. 8
Fig. 8 Reflection and transmission spectra of the FBG array inscribed in the central core of 7-core spun fiber.
Fig. 9
Fig. 9 Reflection spectra of the FBG array inscribed in selected side core of 7-core spun fiber.
Fig. 10
Fig. 10 Single-channel interrogation scheme of 7-core spun fiber with FBGs inscribed in different cores at different resonances wavelengths.
Fig. 11
Fig. 11 Single-channel interrogation of 7-core spun fiber with inscribed four FBG at different resonances wavelengths.
Fig. 12
Fig. 12 Geometry of fiber cross-section and parameters for bending calculations.

Tables (1)

Tables Icon

Table 1 Specification of 7-core spun fiber SSM-7C1500(6.1/125) manufactured by Fibercore

Metrics