Abstract

The enhanced photonic spin Hall effect (SHE) based on the D-shaped fiber with Ag-Ni alloy/silicon layers is proposed and theoretically investigated under excitation of surface plasmon resonance (SPR). In order to achieve the maximum transverse spin-dependent displacements for practical photonic devices, parameters such as the thickness of the Ag-Ni alloy and silicon layers in the D-shaped fiber are optimized. Theoretical modeling and numerical simulation demonstrate that the multilayer structure can effectively enhance the photonic SHE. The maximum transverse shift of 420 μm obtained with optimized parameters is larger than those in the literature. In addition, a maximum angular sensitivity of 114.6°/RIU is achieved by the wavelength interrogation method. Our concept and theoretical assessment suggest a novel and effective means to enhance the photonic SHE, bring us one step closer to the possibility to characterize parameters of dielectric layers by weak measurements, and accelerate the development of optical fibers based on the photonic SHE.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance

Yuanjiang Xiang, Xing Jiang, Qi You, Jun Guo, and Xiaoyu Dai
Photon. Res. 5(5) 467-472 (2017)

Tunable and enhanced spin Hall effect of light in layered nanostructures containing graphene

Min Cheng, Ping Fu, Xiaoteng Tang, Shengyu Chen, Xiyao Chen, Yingting Lin, and Shangyuan Feng
J. Opt. Soc. Am. B 35(8) 1829-1835 (2018)

Weak measurement of the magneto-optical spin Hall effect of light

Jie Li, Tingting Tang, Li Luo, Jian Shen, Chaoyang Li, Jun Qin, and Lei Bi
Photon. Res. 7(9) 1014-1018 (2019)

References

  • View by:
  • |
  • |
  • |

  1. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  2. P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
    [Crossref] [PubMed]
  3. W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
    [Crossref]
  4. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]
  5. X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
    [Crossref]
  6. X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
    [Crossref]
  7. S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
    [Crossref]
  8. X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
    [Crossref] [PubMed]
  9. Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
    [Crossref]
  10. M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
    [Crossref] [PubMed]
  11. H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
    [Crossref]
  12. X. Zhou and X. Ling, “Enhanced photonic spin Hall effect due to surface plasmon resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
    [Crossref]
  13. X. J. Tan and X. S. Zhu, “Enhancing photonic spin Hall effect via long-range surface plasmon resonance,” Opt. Lett. 41(11), 2478–2481 (2016).
    [Crossref] [PubMed]
  14. W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
    [Crossref]
  15. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
    [Crossref] [PubMed]
  16. K. Y. Bliokh, C. T. Samlan, C. Prajapati, G. Puentes, N. K. Viswanathan, and F. Nori, “Spin-Hall effect and circular birefringence of a uniaxial crystal plate,” Optica 3(10), 1039 (2016).
    [Crossref]
  17. O. Takayama and G. Puentes, “Enhanced spin Hall effect of light by transmission in a polymer,” Opt. Lett. 43(6), 1343–1346 (2018).
    [Crossref] [PubMed]
  18. O. Takayama, J. Sukham, R. Malureanu, A. V. Lavrinenko, and G. Puentes, “Photonic spin Hall effect in hyperbolic metamaterials at visible wavelengths,” Opt. Lett. 43(19), 4602–4605 (2018).
    [Crossref] [PubMed]
  19. D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
    [Crossref] [PubMed]
  20. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [Crossref] [PubMed]
  21. Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
    [Crossref]
  22. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
    [Crossref] [PubMed]
  23. Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
    [Crossref]
  24. T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).
  25. Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
    [Crossref]
  26. H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
    [Crossref]
  27. X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).
  28. Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
    [Crossref]
  29. X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
    [Crossref]
  30. Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
    [Crossref]
  31. Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
    [Crossref] [PubMed]
  32. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref] [PubMed]
  33. L. Xie, Z. Zhang, and J. Du, “The photonic spin Hall effect sensor,” Proc. of SPIE 10373, 103730A1- 6 (2017).

2019 (2)

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

2018 (7)

2017 (7)

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
[Crossref]

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

2016 (3)

2015 (2)

2014 (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

2013 (2)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

2012 (2)

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

2011 (2)

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

2009 (1)

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

2006 (1)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Bai, X.

Belov, P. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Bliokh, K. Y.

Chang, R. S.

Chen, M.

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Chen, S.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Chen, X.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Chiu, M. H.

Chu, P. K.

Dai, X.

Dai, X. Y.

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

Dogariu, A.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

Dong, Z.-G.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Duan, T.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Fan, D.

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

Filonov, D. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Ginzburg, P.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Guo, J.

X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
[Crossref]

Haefner, D.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

He, Q.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Huang, K.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Jiang, X.

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
[Crossref]

X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

Jin, R.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Jo, Y.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Kapitanova, P. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Ke, Y.

Kim, I.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Kivshar, Y. S.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Lavrinenko, A. V.

Li, H.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Li, J.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Li, Y.

Lin, H.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Ling, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Zhou and X. Ling, “Enhanced photonic spin Hall effect due to surface plasmon resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Liu, C.

Liu, H.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Liu, Q.

Liu, Y.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

Lu, X.

Luan, F.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Luo, H.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Luo, W.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Luo, Z.

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Malureanu, R.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Marrucci, L.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Mi, C.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

Min, L.

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Murakami, S.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Nagaosa, N.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Niu, G.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Nori, F.

Onoda, M.

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

Pang, Z.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

Poddubny, A. N.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Prajapati, C.

Puentes, G.

Qi, Y.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Qiu, C. W.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Rho, J.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Samlan, C. T.

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Shu, W.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Si, G.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Su, W.

Sukham, J.

Sukhov, S.

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

Sun, S.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Sun, T.

Takayama, O.

Tan, X. J.

Tang, Y.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Viswanathan, N. K.

Voroshilov, P. M.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Wan, T.

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Wang, F.

Wang, Q. K.

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).

Wang, S. F.

Wang, X.

X. Wang, X. Bai, Z. Pang, J. Zhu, Y. Wu, H. Yang, Y. Qi, and X. Wen, “Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film,” Opt. Mater. Express 9(4), 1872–1881 (2019).
[Crossref]

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

Wang, Y.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wen, S.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Wen, X.

Wu, W.

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

Wu, Y.

Wurtz, G. A.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Xiang, Y.

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

Y. Xiang, X. Jiang, Q. You, J. Guo, and X. Dai, “Enhanced spin Hall effect of reflected light with guided-wave surface plasmon resonance,” Photon. Res. 5(5), 467–472 (2017).
[Crossref]

Xiao, L.

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Xiao, S.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xu, K.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Yang, H.

Ye, X.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yi, X.

Yi, Y.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Yi, Z.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Ying, Y.

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

You, Q.

Zayats, A. V.

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

Zhang, J.

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

Zhang, W.

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

W. Zhang, W. Wu, S. Chen, J. Zhang, X. Ling, W. Shu, H. Luo, and S. Wen, “Photonic spin Hall effect on the surface of anisotropic two-dimensional atomic crystals,” Photon. Res. 6(6), 511–516 (2018).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhong, F.

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

Zhou, L.

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Zhou, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

X. Zhou and X. Ling, “Enhanced photonic spin Hall effect due to surface plasmon resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Y. Li, Y. Liu, X. Ling, X. Yi, X. Zhou, Y. Ke, H. Luo, S. Wen, and D. Fan, “Observation of photonic spin Hall effect with phase singularity at dielectric metasurfaces,” Opt. Express 23(2), 1767–1774 (2015).
[Crossref] [PubMed]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

Zhou, Z.

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Zhu, J.

Zhu, X. S.

Adv. Opt. Mater. (1)

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Appl. Phys. Lett. (2)

X. Zhou, X. Ling, H. Luo, and S. Wen, “Identifying graphene layers via spin Hall effect of light,” Appl. Phys. Lett. 101(25), 251602 (2012).
[Crossref]

Y. Wang, R. Jin, J. Li, F. Zhong, H. Liu, I. Kim, Y. Jo, J. Rho, and Z.-G. Dong, “Photonic spin Hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures,” Appl. Phys. Lett. 110(10), 101908 (2017).
[Crossref]

IEEE Photonics J. (2)

Q. K. Wang, X. Jiang, X. Wang, X. Y. Dai, and Y. Xiang, “Enhancing photonic spin Hall effect in the surface plasmon resonance structure covered by the graphene-MoS2 heterostructure,” IEEE Photonics J. 9(6), 1 (2017).
[Crossref]

X. Zhou and X. Ling, “Enhanced photonic spin Hall effect due to surface plasmon resonance,” IEEE Photonics J. 8(1), 1–8 (2016).
[Crossref]

Nanophotonics (1)

Y. Liu, Y. Ke, H. Luo, and S. Wen, “Photonic spin Hall effect in metasurfaces: a brief review,” Nanophotonics 6(1), 51–70 (2017).
[Crossref]

Nat. Commun. (1)

P. V. Kapitanova, P. Ginzburg, F. J. Rodríguez-Fortuño, D. S. Filonov, P. M. Voroshilov, P. A. Belov, A. N. Poddubny, Y. S. Kivshar, G. A. Wurtz, and A. V. Zayats, “Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes,” Nat. Commun. 5(1), 3226 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

S. Chen, C. Mi, W. Wu, W. Zhang, W. Shu, H. Luo, and S. Wen, “Weak-value amplification for Weyl-point separation in momentum space,” New J. Phys. 20(10), 103050 (2018).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

Y. Ying, G. Si, F. Luan, K. Xu, Y. Qi, and H. Li, “Recent research progress of optical fiber sensors based on D-shaped structure,” Opt. Laser Technol. 90, 149–157 (2017).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (2)

Phys. Rev. A (4)

H. Luo, X. Ling, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhancing or suppressing Spin Hall Effect of light in layered nanostructures,” Phys. Rev. A 84(3), 033801 (2011).
[Crossref]

H. Luo, X. Zhou, W. Shu, S. Wen, and D. Fan, “Enhanced and switchable spin Hall effect of light near the Brewster angle on reflection,” Phys. Rev. A 84(4), 043806 (2011).
[Crossref]

X. Zhou, J. Zhang, X. Ling, S. Chen, H. Luo, and S. Wen, “Photonic spin Hall effect in topological insulators,” Phys. Rev. A 88(5), 053840 (2013).
[Crossref]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Phys. Rev. Lett. (3)

M. Onoda, S. Murakami, and N. Nagaosa, “Hall effect of light,” Phys. Rev. Lett. 93(8), 083901 (2004).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96(16), 163905 (2006).
[Crossref] [PubMed]

D. Haefner, S. Sukhov, and A. Dogariu, “Spin Hall effect of light in spherical geometry,” Phys. Rev. Lett. 102(12), 123903 (2009).
[Crossref] [PubMed]

Plasmonics (1)

X. Jiang, Q. K. Wang, and J. Guo, “Enhanced photonic spin Hall effect with a bimetallic film surface plasmon resonance,” Plasmonics 13(4), 1–7 (2017).

Rep. Prog. Phys. (1)

X. Ling, X. Zhou, K. Huang, Y. Liu, C. W. Qiu, H. Luo, and S. Wen, “Recent advances in the spin Hall effect of light,” Rep. Prog. Phys. 80(6), 066401 (2017).
[Crossref] [PubMed]

Results in Phys. (1)

Z. Yi, H. Lin, G. Niu, X. Chen, Z. Zhou, X. Ye, T. Duan, Y. Yi, Y. Tang, and Y. Yi, “Graphene-based tunable triple-band plasmonic perfect metamaterial absorber with good angle-polarization-tolerance,” Results in Phys. 13, 102149 (2019).
[Crossref]

Sci. Rep. (1)

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Science (1)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wuli Xuebao (1)

T. Wan, Z. Luo, L. Min, M. Chen, and L. Xiao, “Enhanced photonic spin Hall effect due to controllable permittivity of alloy film,” Wuli Xuebao 67(6), 064201 (2018).

Other (1)

L. Xie, Z. Zhang, and J. Du, “The photonic spin Hall effect sensor,” Proc. of SPIE 10373, 103730A1- 6 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup, (b) and (c) detailed schematic of the photonic SHE in the multilayer structure composed of the optical fiber with Δ y and Δ y + denoting the transverse displacement of the left and right circular polarization components, respectively.
Fig. 2
Fig. 2 Optical field distributions of the D-shaped fiber of multilayer structure for different incident angles.
Fig. 3
Fig. 3 (a) Dependence of the Fresnel reflection coefficients shifts on the metal layer and incident angle for d 3 =0 ; (b) Value of | r s / r p | changing with the incident angles for d 3 =0; (c) and (d) Relationship of the value of | r s / r p | and incident angle for different thicknesses of the alloy layer.
Fig. 4
Fig. 4 Dependences of the ratio | r s / r p | on the incident angle for different thicknesses of the alloy and silicon layer.
Fig. 5
Fig. 5 Dependence of the transverse beam shifts on the alloy layer and silicon layer thicknesses: (a) H-polarization state and (b) V-polarization state.
Fig. 6
Fig. 6 Dependence of the transverse beam shifts on the incident angles for d 2 =49nmand d 3 =1nm.
Fig. 7
Fig. 7 Spin-dependent splitting in photonic SHE changing with the refractive index of the external environment ( d 2 =48.86nmand d 3 =1nm).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ˜ i ( k ix , k iy )= w 0 2π exp[ w 0 2 ( k ix 2 + k iy 2 ) 4 ],
[ E ˜ r H E ˜ r V ]=[ r p k ry ( r p + r s )cotθ k 0 k ry ( r p + r s )cotθ k 0 r s ]×[ E ˜ i H E ˜ i V ],
E ˜ r H = r p 2 [ exp( +i k ry δ r H ) E ˜ r+ +exp( i k ry δ r H ) E ˜ r ] and
E ˜ r V = i r s 2 [ exp( +i k ry δ r V ) E ˜ r+ +exp( i k ry δ r V ) E ˜ r ].
E r± ( H,V )= d k rx d k y E ˜ r± ( H,V )exp[ i( k rx x r + k ry y r + k rz z r ) ].
r p,s = r 12 + r 234 exp( i ϕ 2 ) 1+ r 12 r 234 exp( i ϕ 2 ) and
ϕ 2 = 4π λ n 2 d 2 cos θ 2 ,
r 234 = r 23 + r 34 exp( i ϕ 3 ) 1+ r 23 r 34 exp( i ϕ 3 ) and
ϕ 3 = 4π λ n 3 d 3 cos θ 3 ,
r mn = ε m cos θ m ε n ε m sin 2 θ m ε m cos θ m + ε n ε m sin 2 θ m
r nm = ε n cos θ m ε m ε n ε m sin 2 θ m ε n cos θ m + ε m ε n ε m sin 2 θ m
Δ y ± = y r | E r± ( H,V ) | 2 d x r d y r | E r± ( H,V ) | 2 d x r d y r .
Δ y ± H = λ 2π [ 1+ | r s | | r p | cos( ϕ s ϕ p ) ]cotθ and
Δ y ± V = λ 2π [ 1+ | r p | | r s | cos( ϕ p ϕ s ) ]cotθ,

Metrics