Abstract

Multiband terahertz absorbers are essential photonic components for responding to, manipulating, and modulating terahertz waves. In this work, improved electric split resonant ring arrays are used to demonstrate multiband terahertz wave absorption. The proposed design strategy is simple, practical, and significant. Experiments and simulations reveal perfect absorption at 0.918 THz and 1.575 THz for the transverse magnetic (TM) polarization and at 0.581, 1.294, and 1.556 THz for the transverse electric (TE) polarization. In addition, the weak resonant peaks that occurred in the experiments in both polarization states have been verified by the simulations. Furthermore, five concentration gradients of 2, 4-dichlorophenoxyacetic acid solutions and six concentration gradients of chlorpyrifos have been detected using the absorber. The lowest detectable concentration that could be monitored was 0.1 ppm. The absorption, intensity, and frequency shift values for the different solution concentrations at the resonant peaks were analyzed. The highest linear regression coefficients were 0.9862 and 0.9565 for the TE and TM polarizations, respectively. This multi-band absorber was demonstrated to be highly efficient in detecting pesticides for food safety applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-flexible polarization-insensitive multiband terahertz metamaterial absorber

Xu Chen and Wenhui Fan
Appl. Opt. 54(9) 2376-2382 (2015)

Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime

Xin Huang, Wei He, Fan Yang, Jia Ran, Bing Gao, and Wei-Li Zhang
Opt. Express 26(20) 25558-25566 (2018)

Polarization-insensitive broadband terahertz metamaterial absorber based on hybrid structures

Yuying Lu, Jining Li, Shaohua Zhang, Jinhai Sun, and Jian Quan Yao
Appl. Opt. 57(21) 6269-6275 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4(4), 146–152 (2016).
    [Crossref]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  3. J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
    [Crossref]
  4. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
    [Crossref] [PubMed]
  5. A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
    [Crossref] [PubMed]
  6. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
    [Crossref]
  7. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  8. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  9. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
    [Crossref]
  10. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), 301–310 (2006).
    [Crossref]
  11. Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
    [Crossref] [PubMed]
  12. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  13. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  14. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
    [Crossref] [PubMed]
  15. G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
    [Crossref]
  16. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  17. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  18. Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
    [Crossref]
  19. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  20. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
    [Crossref]
  21. Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
    [Crossref] [PubMed]
  22. B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
    [Crossref]
  23. R. Yahiaoui, J. P. Guillet, F. de Miollis, and P. Mounaix, “Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications,” Opt. Lett. 38(23), 4988–4990 (2013).
    [Crossref] [PubMed]
  24. Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
    [Crossref]
  25. X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
    [Crossref]
  26. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  27. P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
    [Crossref]
  28. J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
    [Crossref]
  29. X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
    [Crossref] [PubMed]
  30. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
    [Crossref]
  31. Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
    [Crossref] [PubMed]
  32. K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
    [Crossref] [PubMed]
  33. H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
    [Crossref] [PubMed]
  34. X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
    [Crossref]
  35. A. Salim and S. Lim, “Recent advances in the metamaterial-inspired biosensors,” Biosens. Bioelectron. 117(15), 398–402 (2018).
    [Crossref] [PubMed]
  36. Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
    [Crossref] [PubMed]
  37. L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
    [Crossref] [PubMed]
  38. S. Sarkar and R. Das, “Presence of chlorpyrifos shows blue shift of the absorption peak of silver nanohexagons solution – An indication of etching of nanocrystals and sensing of chlorpyrifos,” Sensor Actuat. Biol. Chem. 266, 149–159 (2018).

2019 (2)

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

2018 (5)

A. Salim and S. Lim, “Recent advances in the metamaterial-inspired biosensors,” Biosens. Bioelectron. 117(15), 398–402 (2018).
[Crossref] [PubMed]

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

S. Sarkar and R. Das, “Presence of chlorpyrifos shows blue shift of the absorption peak of silver nanohexagons solution – An indication of etching of nanocrystals and sensing of chlorpyrifos,” Sensor Actuat. Biol. Chem. 266, 149–159 (2018).

2016 (4)

X. Tian and Z. Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photon. Res. 4(4), 146–152 (2016).
[Crossref]

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

2015 (6)

Y. Li, B. An, S. Jiang, J. Gao, Y. Chen, and S. Pan, “Plasmonic induced triple-band absorber for sensor application,” Opt. Express 23(13), 17607–17612 (2015).
[Crossref] [PubMed]

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

2014 (4)

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

2013 (2)

2012 (3)

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

2011 (3)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

2010 (3)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

2008 (2)

2006 (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), 301–310 (2006).
[Crossref]

2004 (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Abbott, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Abdelaziz, R.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Alexander, B. H.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

An, B.

Arbuckle, T. E.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Averitt, R. D.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Aylward, L. L.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

Bank, S. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Barr, D. B.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

Bhaskaran, M.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Burns, C. J.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

Cai, B.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Carver, Z. A.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Chakravadhanula, V. S. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Chen, C.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Chen, H. T.

Chen, L.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Chen, Y.

Cheng, Y. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Chrisler, W. B.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Cremin, K.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Cui, Z.

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

Das, R.

S. Sarkar and R. Das, “Presence of chlorpyrifos shows blue shift of the absorption peak of silver nanohexagons solution – An indication of etching of nanocrystals and sensing of chlorpyrifos,” Sensor Actuat. Biol. Chem. 266, 149–159 (2018).

de Miollis, F.

Ding, F.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Duan, G.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Elbahri, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fan, K.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Faupel, F.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Fujita, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Gang Yu, Z.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Gao, J.

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gong, R. Z.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Guillet, J. P.

Güney, D. O.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Gwamuri, J.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Han, A. A.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Hays, S. M.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

He, Q.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

He, S.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Headland, D.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Hedayati, M. K.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hisatake, S.

Horiguchi, S.

Huang, W. Q.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Javaherirahim, M.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Jiang, S.

Jiang, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Jun Cui, T.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Keiser, G. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Krishnamurthy, S.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Kulkarni, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Kuwano, S.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Li, Y.

Li, Z. Y.

Lim, S.

A. Salim and S. Lim, “Recent advances in the metamaterial-inspired biosensors,” Biosens. Bioelectron. 117(15), 398–402 (2018).
[Crossref] [PubMed]

Ling, X.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, X.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Luders, T.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Ma, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Ma, Z.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Maddox, S. J.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Minamikata, Y.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Moitra, P.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Morgan, M. K.

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

Mounaix, P.

Mozooni, B.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nagatsuma, T.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
[Crossref] [PubMed]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Nie, Y.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Padilla, W. J.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Pala, N.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Pan, S.

Pearce, J. M.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Peng, Y.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), 301–310 (2006).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Salim, A.

A. Salim and S. Lim, “Recent advances in the metamaterial-inspired biosensors,” Biosens. Bioelectron. 117(15), 398–402 (2018).
[Crossref] [PubMed]

Sarkar, S.

S. Sarkar and R. Das, “Presence of chlorpyrifos shows blue shift of the absorption peak of silver nanohexagons solution – An indication of etching of nanocrystals and sensing of chlorpyrifos,” Sensor Actuat. Biol. Chem. 266, 149–159 (2018).

Schalch, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Seren, H. R.

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shen, Y. C.

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

Shi, C.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Slovick, B. A.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Smith, J. N.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Sontag, R. L.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Sriram, S.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Strunkus, T.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Sun, W.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Takahashi, H.

Tang, J.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Tao, H.

Tavassolizadeh, A.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Terada, J.

Tian, X.

Timchalk, C.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Tyrrell, K. J.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Upadhyay, A.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Valentine, J.

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

Vora, A.

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), 301–310 (2006).
[Crossref]

Wang, B. X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, G. Z.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, L. L.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Wang, Y.

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Weber, T. J.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Weitz, K. K.

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Withayachumnankul, W.

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Xiao, Z.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Xie, L.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Xu, K.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Xu, W.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yahiaoui, R.

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Yin, G.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yin, S.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Ying, Y.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Yuan, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Yue, L.

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

Zang, X.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zaporojtchenko, V.

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Zhai, X.

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

Zhang, G. F.

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

Zhang, J.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Zhang, W.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Zhao, X.

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Zheng, X.

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Zhou, L.

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, D.

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

Zhu, J.

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

Zhu, Y.

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

Zhuang, S.

Y. Peng, X. Zang, Y. Zhu, C. Shi, L. Chen, B. Cai, and S. Zhuang, “Ultra-broadband terahertz perfect absorber by exciting multi-order diffractions in a double-layered grating structure,” Opt. Express 23(3), 2032–2039 (2015).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, and X. Zhang, “Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers,” ACS Photonics 6(4), 830–837 (2019).
[Crossref]

Adv. Mater. (2)

K. Fan, J. Zhang, X. Liu, G. F. Zhang, R. D. Averitt, and W. J. Padilla, “Phototunable Dielectric Huygens’ Metasurfaces,” Adv. Mater. 30(22), e1800278 (2018).
[Crossref] [PubMed]

M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonic metamaterials,” Adv. Mater. 23(45), 5410–5414 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, “Ultrabroadband plasmonic absorber for terahertz waves,” Adv. Opt. Mater. 3(3), 376–380 (2015).
[Crossref]

Appl. Phys. Lett. (5)

P. Moitra, B. A. Slovick, Z. Gang Yu, S. Krishnamurthy, and J. Valentine, “Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector,” Appl. Phys. Lett. 104(17), 171102 (2014).
[Crossref]

J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, “Ultra-broadband terahertz metamaterial absorber,” Appl. Phys. Lett. 105(2), 021102 (2014).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: Design, fabrication, and characterization,” Appl. Phys. Lett. 95(24), 241111 (2009).
[Crossref]

S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, and Y. Ma, “High-performance terahertz wave absorbers made of silicon-based metamaterials,” Appl. Phys. Lett. 107(7), 073903 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

X. Ling, Z. Xiao, X. Zheng, J. Tang, and K. Xu, “A three-dimensional ultra-broadband metamaterial absorber in terahertz region,” Appl. Phys., A Mater. Sci. Process. 122(11), 951 (2016).
[Crossref]

Biosens. Bioelectron. (1)

A. Salim and S. Lim, “Recent advances in the metamaterial-inspired biosensors,” Biosens. Bioelectron. 117(15), 398–402 (2018).
[Crossref] [PubMed]

Environ. Health Perspect. (1)

L. L. Aylward, M. K. Morgan, T. E. Arbuckle, D. B. Barr, C. J. Burns, B. H. Alexander, and S. M. Hays, “Biomonitoring data for 2,4-dichlorophenoxyacetic acid in the United States and Canada: interpretation in a public health risk assessment context using Biomonitoring Equivalents,” Environ. Health Perspect. 118(2), 177–181 (2010).
[Crossref] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Int. J. Pharm. (1)

Y. C. Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417(1-2), 48–60 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

B. X. Wang, X. Zhai, G. Z. Wang, W. Q. Huang, and L. L. Wang, “A novel dual-band terahertz metamaterial absorber for a sensor application,” J. Appl. Phys. 117(1), 014504 (2015).
[Crossref]

J. Infrared Millim. Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D Appl. Phys. 39(17), 301–310 (2006).
[Crossref]

Light Sci. Appl. (1)

H. R. Seren, J. Zhang, G. R. Keiser, S. J. Maddox, X. Zhao, K. Fan, S. R. Bank, X. Zhang, and R. D. Averitt, “Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials,” Light Sci. Appl. 5(5), e16078 (2016).
[Crossref] [PubMed]

Nano Lett. (2)

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. (1)

J. Tang, Z. Xiao, and K. Xu, “Ultra-thin metamaterial absorber with extremely bandwidth for solar cell and sensing applications in visible region,” Opt. Mater. 60, 142–147 (2016).
[Crossref]

Photon. Res. (1)

Phys. Rev. B (1)

G. Duan, J. Schalch, X. Zhao, J. Zhang, R. D. Averitt, and X. Zhang, “Identifying the perfect absorption of metamaterial absorbers,” Phys. Rev. B 97(3), 035128 (2018).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

Y. Wang, Z. Cui, D. Zhu, and L. Yue, “Composite Metamaterials for THz Perfect Absorption,” Phys. Status Solidi., A Appl. Mater. Sci. 216(6), 1800940 (2019).
[Crossref]

Sci. Rep. (2)

A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Güney, “Exchanging Ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics,” Sci. Rep. 4(1), 4901 (2014).
[Crossref] [PubMed]

X. Zang, C. Shi, L. Chen, B. Cai, Y. Zhu, and S. Zhuang, “Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings,” Sci. Rep. 5(1), 8901 (2015).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (1)

S. Sarkar and R. Das, “Presence of chlorpyrifos shows blue shift of the absorption peak of silver nanohexagons solution – An indication of etching of nanocrystals and sensing of chlorpyrifos,” Sensor Actuat. Biol. Chem. 266, 149–159 (2018).

Toxicology (1)

Z. A. Carver, A. A. Han, C. Timchalk, T. J. Weber, K. J. Tyrrell, R. L. Sontag, T. Luders, W. B. Chrisler, K. K. Weitz, and J. N. Smith, “Evaluation of non-invasive biomonitoring of 2,4-Dichlorophenoxyacetic acid (2,4-D) in saliva,” Toxicology 410(1), 171–181 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Illustration of multiple-band THz metamaterial absorber. (b) Photograph of the metamaterial absorber. (c) Optical microscopy image of the absorber. (d) Reflection time-domain waveforms in the TE and TM polarization cases. Inset: Designed structure and geometric parameters of the unit cell.
Fig. 2
Fig. 2 Experimentally measured absorption spectra of samples for (a) TM polarization, and (b) TE polarization. Simulated absorption spectra of absorbers for (c) TM polarization, and (d) TE polarization.
Fig. 3
Fig. 3 Absorption maps at oblique incidence for THz waves in the cases of (a) TE polarization, and (b) TM polarization.
Fig. 4
Fig. 4 Electric field distributions at different resonant frequencies. (a) 0.588 THz, (b) 1.28 THz, and (c) 1.559 THz.
Fig. 5
Fig. 5 Experimentally measured absorption spectra for different 2,4-D concentrations at four resonant frequencies from (a) to (d) in the TE polarization case. (e)–(h) Regression coefficients corresponding to the spectra in (a)–(d), respectively. Insets: Schematics of as-used THz sensor and an illustration of the reflection measurement setup.
Fig. 6
Fig. 6 Experimentally measured absorption spectra of different chlorpyrifos concentrations at three resonant frequencies from (a) to (c) in the TM polarization case. (d)–(f) Regression coefficients corresponding to (a)–(c), respectively.
Fig. 7
Fig. 7 Ten repeat measurements for detecting chlorpyrifos with the concentration of (a) 1 ppm, and (b) 100 ppm.

Metrics