Abstract

We describe the use of stacked electrically tunable liquid crystal lenses (TLCLs), along with rod gradient index (GRIN) fixed focus lenses, for endoscopic applications. Architectural and driving conditions are found for the optimization of total aberrations of the assembly. Particular attention is devoted to the coma and polarization aberrations. The coma aberration is reduced by stacking two TLCLs with “opposed” pre-tilt angles (all molecules are in the same plane), and then two such doublets are used with cross oriented molecules (in perpendicular planes) to reduce the polarization dependence. The obtained adaptive rod-GRIN lens enables a focus scan over 80μm (with exceptionally low RMS aberrations ≤0.16μm), making possible the high-quality observation of neurons at various depths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic compensation of gradient index rod lens aberrations by using liquid crystals

Louis Begel and Tigran Galstian
Appl. Opt. 57(26) 7618-7621 (2018)

Optical camera with liquid crystal autofocus lens

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen
Opt. Express 25(24) 29945-29964 (2017)

Electrically variable liquid crystal lenses for ophthalmic distance accommodation

T. Galstian, K. Asatryan, V. Presniakov, and A. Zohrabyan
Opt. Express 27(13) 18803-18817 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
    [Crossref]
  2. L. Guoqiang, “Adaptive Lens,” Prog. Opt. 55, 199–283 (2010).
    [Crossref]
  3. Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
    [Crossref]
  4. J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
    [Crossref]
  5. A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
    [Crossref] [PubMed]
  6. L. Begel and T. Galstian, “Dynamic compensation of gradient index rod lens aberrations by using liquid crystals,” Appl. Opt. 57(26), 7618–7621 (2018).
    [Crossref] [PubMed]
  7. T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
    [Crossref] [PubMed]
  8. G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
    [Crossref]
  9. G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
    [Crossref] [PubMed]
  10. Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
    [Crossref] [PubMed]
  11. H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
    [Crossref] [PubMed]
  12. T. Galstian, “Tuneable liquid crystal lens intraocular implant and methods therefor,” 2018, US Patent App. 13/369,806.
  13. T. Galstian and H. Earhart, “Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor,” 2016, US14924950.
  14. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  15. Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
    [Crossref]
  16. P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, Second Edition, International Series of Monographs on Physics (Oxford University, 1995).
  17. L. M. Blinov and V. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Partially Ordered Systems (Springer-Verlag, 1994).
  18. H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
    [Crossref] [PubMed]
  19. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
    [Crossref] [PubMed]
  20. T. Galstian, A. Saghatelyan, and A. Bagramyan, “Tunable Optical Device, Tunable Liquid Crystal Lens Assembly and Imaging System Using Same,” U.S. patent WO/2016/187715 (December 2, 2016).
  21. A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
    [Crossref] [PubMed]
  22. R. P. J. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” Cold Spring Harb. Protoc. 2012(10), 071464 (2012).
    [Crossref] [PubMed]
  23. T. V. Galstian, Smart Mini-Cameras (CRC, 2013).
  24. L. Begel and T. Galstian, “Liquid crystal lens with corrected wavefront asymmetry,” Appl. Opt. 57(18), 5072–5078 (2018).
    [Crossref] [PubMed]
  25. A. F. Naumov, M. Y. Loktev, I. R. Guralnik, and G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23(13), 992–994 (1998).
    [Crossref] [PubMed]
  26. A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
    [Crossref] [PubMed]
  27. T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
    [Crossref] [PubMed]
  28. T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
    [Crossref] [PubMed]
  29. B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
    [Crossref]
  30. K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
    [Crossref] [PubMed]
  31. C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
    [Crossref] [PubMed]
  32. Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
    [Crossref] [PubMed]
  33. R. Bao, C. Cui, S. Yu, H. Mai, X. Gong, and M. Ye, “Polarizer-free imaging of liquid crystal lens,” Opt. Express 22(16), 19824–19830 (2014).
    [Crossref] [PubMed]
  34. T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single-nematic liquid crystal layer,” OE 54(2), 025104 (2015).
  35. M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
    [Crossref]
  36. H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
    [Crossref]

2019 (1)

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

2018 (2)

2017 (5)

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
[Crossref] [PubMed]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

2016 (1)

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

2015 (4)

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single-nematic liquid crystal layer,” OE 54(2), 025104 (2015).

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (2)

2012 (2)

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

R. P. J. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” Cold Spring Harb. Protoc. 2012(10), 071464 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

L. Guoqiang, “Adaptive Lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

2007 (1)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

2006 (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

2005 (2)

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[Crossref]

1999 (1)

1998 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Allahverdyan, K.

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single-nematic liquid crystal layer,” OE 54(2), 025104 (2015).

Asatryan, K.

Ayräs, P.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Äyräs, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Bagramyan, A.

A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
[Crossref] [PubMed]

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

Bao, R.

Barretto, R. P. J.

R. P. J. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” Cold Spring Harb. Protoc. 2012(10), 071464 (2012).
[Crossref] [PubMed]

Begel, L.

Burns, L. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Careau, S.

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

Chang, C.

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Chen, C.-W.

Chen, H.

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Chen, H.-S.

Chen, P.-J.

Cho, M.

Clamp, J. H.

Cocker, E. D.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Cotovanu, M.

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

Cui, C.

Evensen, M.

Galstian, T.

L. Begel and T. Galstian, “Dynamic compensation of gradient index rod lens aberrations by using liquid crystals,” Appl. Opt. 57(26), 7618–7621 (2018).
[Crossref] [PubMed]

L. Begel and T. Galstian, “Liquid crystal lens with corrected wavefront asymmetry,” Appl. Opt. 57(18), 5072–5078 (2018).
[Crossref] [PubMed]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
[Crossref] [PubMed]

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single-nematic liquid crystal layer,” OE 54(2), 025104 (2015).

Gamal, A. E.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Gauza, S.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Ghosh, K. K.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Giridhar, M. S.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Gleeson, H. F.

Gong, X.

Gou, F.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Guoqiang, L.

L. Guoqiang, “Adaptive Lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

Guralnik, I. R.

Haddock, J. N.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Hain, M.

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

Hashimoto, N.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Hibi, T.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Honkanen, S.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Huang, Y.-P.

Ipponjima, S.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Javidi, B.

Jones, J. C.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Kippelen, B.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Knittel, J.

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

Kurihara, M.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Lee, C.-T.

Lee, Y.-H.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Li, G.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Li, Y.

Lin, H.-Y.

Lin, Y.

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Lin, Y.-H.

Liu, G.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Loktev, M. Y.

Love, G.

Mai, H.

Mathine, D. L.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Matsumoto, K.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Meredith, G. R.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Milton, H. E.

Morgan, P. B.

Naumov, A.

Naumov, A. F.

Nemoto, T.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Nimmerjahn, A.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Peng, F.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Peyghambarian, N.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Presniakov, V.

Reshetnyak, V.

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Richter, H.

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

Saghatelyan, A.

A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
[Crossref] [PubMed]

Sargent, J.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Sato, S.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[Crossref]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Schnitzer, M. J.

R. P. J. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” Cold Spring Harb. Protoc. 2012(10), 071464 (2012).
[Crossref] [PubMed]

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Schwiegerling, J.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Snow, B.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Somalingam, S.

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

Sova, O.

Tabiryan, N. V.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tan, G.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Tanabe, A.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Thiboutot, M.

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

Tork, A.

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

Tschudi, T.

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

Valley, P.

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Vdovin, G.

Vladimirov, F.

Wahle, M.

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Wang, B.

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[Crossref]

Wang, Y.

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

Wang, Y.-J.

Weng, Y.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Williby, G.

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Wu, S.-T.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[Crossref] [PubMed]

Ye, M.

R. Bao, C. Cui, S. Yu, H. Mai, X. Gong, and M. Ye, “Polarizer-free imaging of liquid crystal lens,” Opt. Express 22(16), 19824–19830 (2014).
[Crossref] [PubMed]

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[Crossref]

Yokoyama, M.

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

Yu, S.

Zhan, T.

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Ziv, Y.

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

Zohrabyan, A.

Adv. Opt. Mater. (1)

M. Wahle, B. Snow, J. Sargent, and J. C. Jones, “Embossing reactive mesogens: a facile approach to polarization-independent liquid crystal devices,” Adv. Opt. Mater. 7(2), 1801261 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Li, P. Valley, P. Äyräs, D. L. Mathine, S. Honkanen, and N. Peyghambarian, “High-efficiency switchable flat diffractive ophthalmic lens with three-layer electrode pattern and two-layer via structures,” Appl. Phys. Lett. 90(11), 111105 (2007).
[Crossref]

Cold Spring Harb. Protoc. (1)

R. P. J. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” Cold Spring Harb. Protoc. 2012(10), 071464 (2012).
[Crossref] [PubMed]

Express, OE (1)

T. Galstian, K. Asatryan, V. Presniakov, A. Zohrabyan, A. Tork, A. Bagramyan, S. Careau, M. Thiboutot, and M. Cotovanu, “High optical quality electrically variable liquid crystal lens using an additional floating electrode,” Express, OE 25(24), 29945–29964 (2016).
[Crossref] [PubMed]

IEE Proc. Sci. Meas. Technol. (1)

J. Knittel, M. Hain, H. Richter, T. Tschudi, and S. Somalingam, “Liquid crystal lens for spherical aberration compensation in a Blu-ray disc system,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Chen, Y. Wang, C. Chang, and Y. Lin, “A polarizer-free liquid crystal lens exploiting an embedded-multilayered structure,” IEEE Photonics Technol. Lett. 27(8), 899–902 (2015).
[Crossref]

J. Biomed. Opt. (1)

A. Tanabe, T. Hibi, S. Ipponjima, K. Matsumoto, M. Yokoyama, M. Kurihara, N. Hashimoto, and T. Nemoto, “Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy,” J. Biomed. Opt. 20(10), 101204 (2015).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Bagramyan, T. Galstian, and A. Saghatelyan, “Motion-free endoscopic system for brain imaging at variable focal depth using liquid crystal lenses,” J. Biophotonics 10(6-7), 762–774 (2017).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18(9), 1679–1684 (1979).
[Crossref]

Liq. Cryst. Rev. (1)

Y.-H. Lin, Y.-J. Wang, and V. Reshetnyak, “Liquid crystal lenses with tunable focal length,” Liq. Cryst. Rev. 5(2), 111–143 (2017).
[Crossref]

Nat. Methods (1)

K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Methods 8(10), 871–878 (2011).
[Crossref] [PubMed]

OE (1)

T. Galstian and K. Allahverdyan, “Focusing unpolarized light with a single-nematic liquid crystal layer,” OE 54(2), 025104 (2015).

Opt. Commun. (1)

B. Wang, M. Ye, and S. Sato, “Liquid crystal lens with stacked structure of liquid-crystal layers,” Opt. Commun. 250(4-6), 266–273 (2005).
[Crossref]

Opt. Data Process. Storage (1)

Y.-H. Lee, G. Tan, T. Zhan, Y. Weng, G. Liu, F. Gou, F. Peng, N. V. Tabiryan, S. Gauza, and S.-T. Wu, “Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities,” Opt. Data Process. Storage 3(1), 79–88 (2017).
[Crossref]

Opt. Express (10)

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

Y.-H. Lin and H.-S. Chen, “Electrically tunable-focusing and polarizer-free liquid crystal lenses for ophthalmic applications,” Opt. Express 21(8), 9428–9436 (2013).
[Crossref] [PubMed]

H. E. Milton, P. B. Morgan, J. H. Clamp, and H. F. Gleeson, “Electronic liquid crystal contact lenses for the correction of presbyopia,” Opt. Express 22(7), 8035–8040 (2014).
[Crossref] [PubMed]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

T. Galstian, O. Sova, K. Asatryan, V. Presniakov, A. Zohrabyan, and M. Evensen, “Optical camera with liquid crystal autofocus lens,” Opt. Express 25(24), 29945–29964 (2017).
[Crossref] [PubMed]

C.-T. Lee, Y. Li, H.-Y. Lin, and S.-T. Wu, “Design of polarization-insensitive multi-electrode GRIN lens with a blue-phase liquid crystal,” Opt. Express 19(18), 17402–17407 (2011).
[Crossref] [PubMed]

Y. Li and S.-T. Wu, “Polarization independent adaptive microlens with a blue-phase liquid crystal,” Opt. Express 19(9), 8045–8050 (2011).
[Crossref] [PubMed]

R. Bao, C. Cui, S. Yu, H. Mai, X. Gong, and M. Ye, “Polarizer-free imaging of liquid crystal lens,” Opt. Express 22(16), 19824–19830 (2014).
[Crossref] [PubMed]

A. Naumov, G. Love, M. Y. Loktev, and F. Vladimirov, “Control optimization of spherical modal liquid crystal lenses,” Opt. Express 4(9), 344–352 (1999).
[Crossref] [PubMed]

H.-S. Chen and Y.-H. Lin, “An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,” Opt. Express 21(15), 18079–18088 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

G. Li, D. L. Mathine, P. Valley, P. Ayräs, J. N. Haddock, M. S. Giridhar, G. Williby, J. Schwiegerling, G. R. Meredith, B. Kippelen, S. Honkanen, and N. Peyghambarian, “Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications,” Proc. Natl. Acad. Sci. U.S.A. 103(16), 6100–6104 (2006).
[Crossref] [PubMed]

Prog. Opt. (1)

L. Guoqiang, “Adaptive Lens,” Prog. Opt. 55, 199–283 (2010).
[Crossref]

Other (6)

T. Galstian, “Tuneable liquid crystal lens intraocular implant and methods therefor,” 2018, US Patent App. 13/369,806.

T. Galstian and H. Earhart, “Reprogrammable tuneable liquid crystal lens intraocular implant and methods therefor,” 2016, US14924950.

P.-G. de Gennes and J. Prost, The Physics of Liquid Crystals, Second Edition, International Series of Monographs on Physics (Oxford University, 1995).

L. M. Blinov and V. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Partially Ordered Systems (Springer-Verlag, 1994).

T. Galstian, A. Saghatelyan, and A. Bagramyan, “Tunable Optical Device, Tunable Liquid Crystal Lens Assembly and Imaging System Using Same,” U.S. patent WO/2016/187715 (December 2, 2016).

T. V. Galstian, Smart Mini-Cameras (CRC, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) Optical power (in diopters) versus control frequency (in kHz) and b) circles - total RMS aberrations (in μm) and triangle - separated coma aberrations versus the optical power for the TLCL.
Fig. 2
Fig. 2 a) Demonstration of the strong coma in the case of a TLCL with single NLC layer (left column) and its compensation by the combination of two TLCLs with “opposed” pretilt angles (right column). b) Optical power (in diopters) versus control frequency (in kHz) for 2 TLCLs with single NLC layers (squares and triangles) and for one combined TLCL (double NLC stack, circles). c) Total RMS aberrations, d) Coma aberrations.
Fig. 3
Fig. 3 a) Schematic demonstration of one possible TLCL stacking option (to demonstrate the polarization mismatch problem, triangles). b) Mismatch values (in μm) versus the control frequency (defining the OP of the lens) for two slightly different TLCLs (with different OP values, Table 1) and extreme cases: triangles: wrong positioning; squares: the right positioning, circles: individual control (see text for details).
Fig. 4
Fig. 4 a) Experimental set-up used to characterize the impact of polarization mismatch on the quality of recorded images. b) micro photography of obtained images, c) intensity slope versus driving frequency of one TLCL (see the main text for details).

Tables (1)

Tables Icon

Table 1 Values of drive parameters used for obtaining minimal polarization mismatch.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

OP= 2×Δn×L r 2

Metrics