Abstract

In this paper, we present our recent research results on light propagation in photonic crystal fibers (PCFs) infiltrated with a 6CHBT nematic liquid crystal (LC) doped with 2-nm gold nanoparticles (NPs) with a concentration in the range of 0.01 – 0.5% wt. Electro-optical response times and thermal tuning of the investigated samples have been studied in detail. We have observed up to ~80% decrease of rise times for different concentrations of gold NPs in the LC. Moreover, a significant reduction of the Fréedericksz threshold voltage (up to 60%) has been observed for samples with higher concentrations of 2-nm gold NPs in 6CHBT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo and electrical tunable effects in photonic liquid crystal fiber

Chun-Hong Lee, Ching-Hsiang Chen, Chia-Lung Kao, Chin-Ping Yu, Szu-Ming Yeh, Wood-Hi Cheng, and Tsung-Hsien Lin
Opt. Express 18(3) 2814-2821 (2010)

Enhancement of electro-optic properties in liquid crystal devices via titanium nanoparticle doping

Yong-Seok Ha, Hyung-Jun Kim, Hong-Gyu Park, and Dae-Shik Seo
Opt. Express 20(6) 6448-6455 (2012)

Low-loss propagation and continuously tunable birefringence in high-index photonic crystal fibers filled with nematic liquid crystals

Slawomir Ertman, Tomasz R. Wolinski, Dariusz Pysz, Ryszard Buczynski, Edward Nowinowski-Kruszelnicki, and Roman Dabrowski
Opt. Express 17(21) 19298-19310 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lit. Technol. 24(12), 4729–4749 (2006).
    [Crossref]
  2. T. T. Larsen, A. Bjarklev, and D. S. Hermann, “Optical devices based on liquid crystal photonic bandgap fibres,” 11(20), 2589–2596 (2003).
    [Crossref]
  3. T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).
  4. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
    [Crossref]
  5. J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
    [Crossref]
  6. M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
    [Crossref]
  7. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
    [Crossref]
  8. A. Lorenz and H.-S. Kitzerow, “Efficient electro-optic switching in a photonic liquid crystal fiber,” Appl. Phys. Lett. 98(24), 241106 (2011).
    [Crossref]
  9. K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
    [Crossref]
  10. D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
    [Crossref] [PubMed]
  11. S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
    [Crossref] [PubMed]
  12. D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).
  13. R. Dąbrowski, “From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals,” Liq. Cryst. 42(5), 783–818 (2015).
    [Crossref]
  14. M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
    [Crossref]
  15. J. P. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, 1995).
  16. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Partially Ordered Systems (Springer, 1994).
  17. D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
    [Crossref]
  18. Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
    [Crossref]
  19. L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
    [Crossref] [PubMed]
  20. A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
    [Crossref]
  21. D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
    [Crossref]
  22. R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
    [Crossref]
  23. R. Dãbrowski, “Isothiocyanates and their Mixtures with A Broad Range of Nematic Phase,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 191(1), 17–27 (1990).
    [Crossref]
  24. E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
    [Crossref] [PubMed]
  25. B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
    [Crossref]
  26. M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
    [Crossref]
  27. D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
    [Crossref] [PubMed]
  28. P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
    [Crossref]
  29. S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
    [Crossref]
  30. A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
    [Crossref]
  31. S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
    [Crossref]
  32. M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).
  33. S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
    [Crossref] [PubMed]
  34. M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
    [Crossref] [PubMed]
  35. A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
    [Crossref]
  36. M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
    [Crossref]
  37. G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
    [Crossref]
  38. Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
    [Crossref]
  39. A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
    [Crossref] [PubMed]
  40. S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
    [Crossref]
  41. J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
    [Crossref]
  42. M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
    [Crossref]
  43. T. Woliński, “Calorific Effect of the Magnetically Induced Phase Transition in Induced Chiral Nematic Systems,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 162(2), 171–183 (1988).
    [Crossref]
  44. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
    [Crossref]

2019 (1)

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

2018 (2)

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

2017 (3)

S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
[Crossref] [PubMed]

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

2016 (2)

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

2015 (3)

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

R. Dąbrowski, “From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals,” Liq. Cryst. 42(5), 783–818 (2015).
[Crossref]

S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
[Crossref]

2014 (6)

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

2012 (4)

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
[Crossref]

2011 (3)

A. Lorenz and H.-S. Kitzerow, “Efficient electro-optic switching in a photonic liquid crystal fiber,” Appl. Phys. Lett. 98(24), 241106 (2011).
[Crossref]

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

2010 (3)

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

2009 (1)

2008 (2)

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
[Crossref]

2006 (3)

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lit. Technol. 24(12), 4729–4749 (2006).
[Crossref]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

2005 (2)

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

2004 (1)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

2003 (1)

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

1994 (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

1990 (1)

R. Dãbrowski, “Isothiocyanates and their Mixtures with A Broad Range of Nematic Phase,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 191(1), 17–27 (1990).
[Crossref]

1988 (1)

T. Woliński, “Calorific Effect of the Magnetically Induced Phase Transition in Induced Chiral Nematic Systems,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 162(2), 171–183 (1988).
[Crossref]

1985 (1)

R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
[Crossref]

Alaverdyan, R. B.

M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).

Alkeskjold, T. T.

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Alkilany, A. M.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Atorf, B.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Bartosewicz, B.

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

Beaugnon, E.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Benini, E.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Bethell, D.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Bidnyk, S.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
[Crossref]

Biradar, A. M.

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

Bjarklev, A.

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Blach, J.-F.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

Bondarczuk, K.

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Bruno, E.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Brust, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Buchnev, O.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
[Crossref]

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Budaszewski, D.

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

Chaud, X.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Chigrinov, V. G.

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

Chojnowska, O.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Chychlowski, M.

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

Cseh, L.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Dabrowski, R.

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

R. Dąbrowski, “From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals,” Liq. Cryst. 42(5), 783–818 (2015).
[Crossref]

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
[Crossref]

Dabrowski, R. S.

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

Dãbrowski, R.

R. Dãbrowski, “Isothiocyanates and their Mixtures with A Broad Range of Nematic Phase,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 191(1), 17–27 (1990).
[Crossref]

Dhar, R.

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

Domanski, A. W.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

Domañski, A. W.

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Dreaden, E. C.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Dupont, L.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

Dybko, A.

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

Dziaduszek, J.

R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
[Crossref]

Éber, N.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

El-Sayed, M. A.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Engan, H. E.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Ertman, S.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

Eskildsen, L.

Evans, D. R.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Fodor-Csorba, K.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Funck, T.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Gauza, S.

Glushchenko, A.

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Guo, Q.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Haakestad, M. W.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Haase, W.

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

Hadjichristov, G. B.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Hakobyan, M. R.

M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).

Hakobyan, R. S.

M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).

Hall, T. J.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
[Crossref]

Hegmann, T.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Henninot, J.-F.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

Hiremath, U. S.

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Hu, J. J.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Huang, X.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Inam, M.

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

Jadzyn, J.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Jankiewicz, B.

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

Kaczmarek, M.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
[Crossref]

Kempter, S.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Khan, K. R.

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
[Crossref]

Kinkead, B.

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Kitzerow, H.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Kitzerow, H. S.

S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
[Crossref] [PubMed]

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Kitzerow, H.-S.

A. Lorenz and H.-S. Kitzerow, “Efficient electro-optic switching in a photonic liquid crystal fiber,” Appl. Phys. Lett. 98(24), 241106 (2011).
[Crossref]

Knust, S.

S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
[Crossref] [PubMed]

Koneracká, M.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Kopcanský, P.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Krishna Prasad, S.

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Ksondzyk, S.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Kula, P.

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

Kumar, M. V.

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

Kumar, S.

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

Kwok, H. S.

Kwok, H.-S.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Lapanik, A.

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

Legrand, C.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

Lesiak, P.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Liedl, T.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Lorenz, A.

A. Lorenz and H.-S. Kitzerow, “Efficient electro-optic switching in a photonic liquid crystal fiber,” Appl. Phys. Lett. 98(24), 241106 (2011).
[Crossref]

Lu, C.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

Lysenko, D.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Manohar, R.

S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
[Crossref]

Marino, L.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Marinov, Y. G.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Martens, K.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Mehl, G. H.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Mehta, D. S.

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

Miglioli, I.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Mishra, A.

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

Mishra, M.

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

Mitróová, Z.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Mühlenbernd, H.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Murphy, C. J.

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Nair, G. G.

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Nandhakumar, I.

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
[Crossref]

Nielsen, M. D.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Nowinowski-Kruszelnicki, E.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

Orlandi, S.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Orzechowski, K.

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Otón, J. M.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Ouskova, E.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Pandey, A. S.

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

Petrov, A. G.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Poudereux, D.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Pozhidaev, E. P.

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Prasad, S. K.

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

Qi, H.

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Ren, G.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Reshetnyak, V.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Reznikov, Y.

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Riishede, J.

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Rudzki, A.

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

Russell, P. S. J.

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lit. Technol. 24(12), 4729–4749 (2006).
[Crossref]

Saitzek, S.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

Sala-Tefelska, M. M.

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

Sampath, S.

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Sandhya, K. L.

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Scaramuzza, N.

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

Schiffrin, D. J.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Scolari, L.

L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17(5), 3754–3764 (2009).
[Crossref] [PubMed]

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

Shilpa, T.

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

Shum, P.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Siarkowska, A.

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

Sierakowski, M.

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

Singh, G.

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

Singh, S.

S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
[Crossref]

Srivastava, A. K.

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

Strzezysz, O.

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

Szaniawska, K.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Szczucinski, T.

R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
[Crossref]

Tam, A. M. W.

Tefelska, M.

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Tereshchenko, O.

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Timko, M.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Tomašovicová, N.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Tóth-Katona, T.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Urbanski, M.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Vajda, A.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Vij, J. K.

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

Wahle, M.

S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
[Crossref] [PubMed]

Walker, M.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Wang, G.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Warenghem, M.

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

West, J.

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

Whyman, R.

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

Wojcik, J.

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

Wolinski, T.

T. Woliński, “Calorific Effect of the Magnetically Induced Phase Transition in Induced Chiral Nematic Systems,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 162(2), 171–183 (1988).
[Crossref]

Wolinski, T. R.

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Wolinski, V. G. Chigrinov, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystals in microchannels,” Opt. Lett. 39(16), 4679–4682 (2014).
[Crossref] [PubMed]

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Wu, S.-T.

Xianyu, H.

Yadav, S. P.

S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
[Crossref]

Yelamaggad, C. V.

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

Yu, X.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Zannoni, C.

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Závišová, V.

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

Zentgraf, T.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Zhai, L.

Zhang, B.

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

Acta Phys. Pol. A (1)

P. Kopčanský, N. Tomašovičová, M. Koneracká, M. Timko, Z. Mitróová, V. Závišová, N. Éber, K. Fodor-Csorba, T. Tóth-Katona, A. Vajda, J. Jadzyn, E. Beaugnon, and X. Chaud, “Structural phase transition in liquid crystal doped with gold nanoparticles,” Acta Phys. Pol. A 118(5), 988–989 (2010).
[Crossref]

AIP Adv. (1)

M. Inam, G. Singh, A. M. Biradar, and D. S. Mehta, “Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell,” AIP Adv. 1(4), 042162 (2011).
[Crossref]

Appl. Phys. Express (1)

Q. Guo, A. K. Srivastava, E. P. Pozhidaev, V. G. Chigrinov, and H.-S. Kwok, “Optimization of alignment quality of ferroelectric liquid crystals by controlling anchoring energy,” Appl. Phys. Express 7(2), 021701 (2014).
[Crossref]

Appl. Phys. Lett. (4)

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85(12), 2181–2183 (2004).
[Crossref]

A. Lorenz and H.-S. Kitzerow, “Efficient electro-optic switching in a photonic liquid crystal fiber,” Appl. Phys. Lett. 98(24), 241106 (2011).
[Crossref]

Y. Reznikov, O. Buchnev, O. Tereshchenko, V. Reshetnyak, A. Glushchenko, and J. West, “Ferroelectric nematic suspension,” Appl. Phys. Lett. 82(12), 1917–1919 (2003).
[Crossref]

M. Kaczmarek, O. Buchnev, and I. Nandhakumar, “Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response,” Appl. Phys. Lett. 92(10), 103307 (2008).
[Crossref]

Armen. J. Phys. (1)

M. R. Hakobyan, R. B. Alaverdyan, and R. S. Hakobyan, “Enhanced Physical Properties of Nematics Doped With Ferroelectric Nanoparticles,” Armen. J. Phys. 7(1), 11–18 (2014).

Beilstein J. Nanotechnol. (1)

A. Siarkowska, M. Chychłowski, D. Budaszewski, B. Jankiewicz, B. Bartosewicz, and T. R. Woliński, “Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles,” Beilstein J. Nanotechnol. 8(1), 2790–2801 (2017).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, and M. A. El-Sayed, “The golden age: gold nanoparticles for biomedicine,” Chem. Soc. Rev. 41(7), 2740–2779 (2012).
[Crossref] [PubMed]

Eur Phys J E Soft Matter (1)

D. Lysenko, E. Ouskova, S. Ksondzyk, V. Reshetnyak, L. Cseh, G. H. Mehl, and Y. Reznikov, “Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal,” Eur Phys J E Soft Matter 35(5), 33 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

M. W. Haakestad, T. T. Alkeskjold, M. D. Nielsen, L. Scolari, J. Riishede, H. E. Engan, and A. Bjarklev, “Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber,” IEEE Photonics Technol. Lett. 17(4), 819–821 (2005).
[Crossref]

J. Appl. Phys. (2)

G. B. Hadjichristov, Y. G. Marinov, A. G. Petrov, E. Bruno, L. Marino, and N. Scaramuzza, “Electro-optically responsive composites of gold nanospheres in 5CB liquid crystal under direct current and alternating current joint action,” J. Appl. Phys. 115(8), 083107 (2014).
[Crossref]

J.-F. Blach, S. Saitzek, C. Legrand, L. Dupont, J.-F. Henninot, and M. Warenghem, “BaTiO3 ferroelectric nanoparticles dispersed in 5CB nematic liquid crystal: Synthesis and electro-optical characterization,” J. Appl. Phys. 107(7), 074102 (2010).
[Crossref]

J. Chem. Soc. Chem. Commun. (1)

M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system,” J. Chem. Soc. Chem. Commun. 0(7), 801–802 (1994).
[Crossref]

J. Lit. Technol. (1)

P. S. J. Russell, “Photonic-Crystal Fibers,” J. Lit. Technol. 24(12), 4729–4749 (2006).
[Crossref]

J. Mol. Liq. (1)

D. Budaszewski, A. Siarkowska, M. Chychłowski, B. Jankiewicz, B. Bartosewicz, R. Dąbrowski, and T. R. Woliński, “Nanoparticles-enhanced photonic liquid crystal fibers,” J. Mol. Liq. 267, 271–278 (2018).
[Crossref]

J. Phys. Chem. B (1)

S. Knust, M. Wahle, and H. S. Kitzerow, “Ferroelectric Liquid Crystals in Microcapillaries: Observation of Different Electro-optic Switching Mechanisms,” J. Phys. Chem. B 121(19), 5110–5115 (2017).
[Crossref] [PubMed]

Liq. Cryst. (7)

D. Budaszewski, A. K. Srivastava, V. G. Chigrinov, and T. R. Woliński, “Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres,” Liq. Cryst. 46(2), 272–280 (2019).
[Crossref]

R. Dąbrowski, “From the discovery of the partially bilayer smectic A phase to blue phases in polar liquid crystals,” Liq. Cryst. 42(5), 783–818 (2015).
[Crossref]

S. Krishna Prasad, K. L. Sandhya, G. G. Nair, U. S. Hiremath, C. V. Yelamaggad, and S. Sampath, “Electrical conductivity and dielectric constant measurements of liquid crystal-gold nanoparticle composites,” Liq. Cryst. 33(10), 1121–1125 (2006).
[Crossref]

A. S. Pandey, R. Dhar, S. Kumar, and R. Dabrowski, “Enhancement of the display parameters of 4′-pentyl-4-cyanobiphenyl due to the dispersion of functionalised gold nano particles,” Liq. Cryst. 38(1), 115–120 (2011).
[Crossref]

B. Atorf, T. Funck, T. Hegmann, S. Kempter, T. Liedl, K. Martens, H. Mühlenbernd, T. Zentgraf, B. Zhang, H. Kitzerow, and M. Urbanski, “Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures,” Liq. Cryst. 44(12–13), 1929–1947 (2017).
[Crossref]

M. Mishra, R. S. Dabrowski, J. K. Vij, A. Mishra, and R. Dhar, “Electrical and electro-optical parameters of 4ʹ-octyl-4-cyanobiphenyl nematic liquid crystal dispersed with gold and silver nanoparticles,” Liq. Cryst. 42(11), 1580–1590 (2015).
[Crossref]

S. P. Yadav, R. Manohar, and S. Singh, “Effect of TiO 2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal,” Liq. Cryst. 42(8), 1095–1101 (2015).
[Crossref]

Meas. Sci. Technol. (1)

T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17(5), 985–991 (2006).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

R. Dabrowski, J. Dziaduszek, and T. Szczuciński, “Mesomorphic Characteristics of Some New Homologous Series with the Isothiocyanato Terminal Group,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 124(1), 241–257 (1985).
[Crossref]

Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. (2)

R. Dãbrowski, “Isothiocyanates and their Mixtures with A Broad Range of Nematic Phase,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 191(1), 17–27 (1990).
[Crossref]

T. Woliński, “Calorific Effect of the Magnetically Induced Phase Transition in Induced Chiral Nematic Systems,” Mol. Cryst. Liq. Cryst. Inc. Nonlinear Opt. 162(2), 171–183 (1988).
[Crossref]

Nanoscale (1)

M. Urbanski, B. Kinkead, H. Qi, T. Hegmann, and H. S. Kitzerow, “Electroconvection in nematic liquid crystals via nanoparticle doping,” Nanoscale 2(7), 1118–1121 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolinski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281(17), 4339–4342 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

M. M. Sala-Tefelska, K. Orzechowski, M. Sierakowski, A. Siarkowska, T. R. Woliński, O. Strzeżysz, and P. Kula, “Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains,” Opt. Mater. 75, 211–215 (2018).
[Crossref]

Opto-Electron. Rev. (1)

T. R. Woliński, K. Szaniawska, K. Bondarczuk, P. Lesiak, and A. W. Domañski, “Propagation properties of photonic crystal fibers filled with nematic liquid crystals,”, Opto-Electron. Rev. 13(2), 177–182 (2005).

Photonics Lett. Pol. (1)

A. Siarkowska, M. Chychlowski, T. R. Wolinski, and A. Dybko, “Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers,” Photonics Lett. Pol. 8(1), 29–31 (2016).
[Crossref]

Phys. Chem. Chem. Phys. (1)

S. Orlandi, E. Benini, I. Miglioli, D. R. Evans, V. Reshetnyak, and C. Zannoni, “Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape,” Phys. Chem. Chem. Phys. 18(4), 2428–2441 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

D. Poudereux, K. Orzechowski, O. Chojnowska, M. Tefelska, T. R. Woliński, and J. M. Otón, “Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase,” Proc. SPIE 9290, 92900A (2014).

Prog. Electromagn. Res. M (1)

K. R. Khan, S. Bidnyk, and T. J. Hall, “Tunable all optical switch implemented in a liquid crystal filled dual-core photonic crystal fiber,” Prog. Electromagn. Res. M 22, 179–189 (2012).
[Crossref]

RSC Advances (1)

S. K. Prasad, M. V. Kumar, T. Shilpa, and C. V. Yelamaggad, “Enhancement of electrical conductivity, dielectric anisotropy and director relaxation frequency in composites of gold nanoparticle and a weakly polar nematic liquid crystal,” RSC Advances 4(9), 4453–4462 (2014).
[Crossref]

Soft Matter (1)

A. Lapanik, A. Rudzki, B. Kinkead, H. Qi, T. Hegmann, and W. Haase, “Electrooptical and dielectric properties of alkylthiol-capped gold nanoparticle-ferroelectric liquid crystal nanocomposites: Influence of chain length and tethered liquid crystal functional groups,” Soft Matter 8(33), 8722–8728 (2012).
[Crossref]

Other (3)

T. T. Larsen, A. Bjarklev, and D. S. Hermann, “Optical devices based on liquid crystal photonic bandgap fibres,” 11(20), 2589–2596 (2003).
[Crossref]

J. P. P. G. de Gennes, The Physics of Liquid Crystals (Oxford University, 1995).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Partially Ordered Systems (Springer, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A cross-section of PCF 061221 (UMCS, Poland).
Fig. 2
Fig. 2 Colloidal suspension of Au NPs in chloroform.
Fig. 3
Fig. 3 Pictures of a microcapillary infiltrated with an undoped (a, b, c), 0.01% wt. (d, e, f), 0.1% wt. (g, h, i) and 0.5% wt. Au NPs-doped 6CHBT LC (j, k, l) under a polarizing microscope with crossed polarizers.
Fig. 4
Fig. 4 Setup for spectral measurements at different temperatures.
Fig. 5
Fig. 5 Propagation spectra for thermal switching of PLCF with (a) undoped LC, (b) 0.01% wt. Au NPs, (c) 0.1% wt. Au NPs and 0.5% wt. Au NPs. Shifts of PBGs are visible in all cases.
Fig. 6
Fig. 6 Experimental setup for switching times measurements induced by an external electric field.
Fig. 7
Fig. 7 Rise times (a) and fall times (b) for undoped, 0.01% wt. Au NPs-doped and 0.5% wt. Au NPs-doped PLCF under an external electric field.

Tables (3)

Tables Icon

Table 1 N-I phase transition temperatures for a 20-μm microcapillary and PCFs filled with different concentrations of Au NPs.

Tables Icon

Table 2 Comparison of rise times for undoped and NPs-doped LCs. In brackets there are given percentage changes of the time value (rounded to the full value) compared to the rise time of an undoped sample.

Tables Icon

Table 3 Comparison of fall times for undoped and NPs-doped LCs. In brackets there are given percentage changes of the time value (rounded to the full value) compared to the rise time of an undoped sample.

Metrics