Abstract

The effects of ion clustering and excited state absorption occurring in holmium-doped fiber lasers are investigated experimentally and theoretically. It is found that the slope efficiencies of holmium-doped fiber lasers are reduced by inhomogeneous upconversion associated with the clustering of Ho3+ ions. Via theoretical analysis based upon Judd–Ofelt theory, it is also found that the effect of excited state absorption on the performance of Ho-doped fiber lasers is negligible, a fact indicating that ion clustering is the dominant cause of the lower-than-expected slope efficiencies observed in holmium-doped fiber lasers. We argue that ion clustering is an intrinsic flaw of holmium-doped fibers and is difficult to eliminate, because our research efforts are based on commercially available low-concentration fiber, which is fabricated with state-of-the-art techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effects of ion clusters on the performance of a heavily doped erbium-doped fiber laser

H. L. An, E. Y. B. Pun, H. D. Liu, and X. Z. Lin
Opt. Lett. 23(15) 1197-1199 (1998)

Excited-state absorption and ion pairs as sources of nonlinear losses in heavily doped Erbium silica fiber and Erbium fiber laser

Alexander V. Kir’yanov, Yury O. Barmenkov, and Nikolay N. Il’ichev
Opt. Express 13(21) 8498-8507 (2005)

Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers

Yulong Tang and Jianqiu Xu
J. Opt. Soc. Am. B 27(2) 179-186 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).
  2. S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
    [Crossref]
  3. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
    [Crossref]
  4. K. Oh, T. F. Morse, P. M. Weber, A. Kilian, and L. Reinhart, “Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser,” Opt. Lett. 19(4), 278–280 (1994).
    [Crossref] [PubMed]
  5. Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
    [Crossref]
  6. S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
    [Crossref] [PubMed]
  7. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
    [Crossref]
  8. S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm,” Appl. Phys. B 76(7), 793–795 (2003).
    [Crossref]
  9. A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
    [Crossref]
  10. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 µm,” Opt. Lett. 35(4), 490–492 (2010).
    [Crossref] [PubMed]
  11. V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
    [Crossref]
  12. X. Wang, P. Zhou, Y. Miao, H. Zhang, H. Xiao, X. Wang, and Z. Liu, “Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser,” J. Opt. Soc. Am. B 31(10), 2476–2479 (2014).
    [Crossref]
  13. S. D. Jackson and Y. Li, “High-power broadly tunable Ho3+-doped silica fibre laser,” Electron. Lett. 40(23), 1474–1475 (2004).
    [Crossref]
  14. Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.
  15. A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
    [Crossref]
  16. J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO/Europe and EQEC (Optical Society of America, 2009), paper CJ6–5.
  17. S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
    [Crossref]
  18. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  19. A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
    [Crossref] [PubMed]
  20. E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
    [Crossref]
  21. A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
    [Crossref]
  22. S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
    [Crossref]
  23. D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
    [Crossref]
  24. A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
    [Crossref]
  25. J. Wang, D. Yeom, N. Simakov, A. Hemming, A. Carter, S. B. Lee, and K. Lee, “Numerical modeling of in-band pumped Ho-doped silica fiber lasers,” J. Lightwave Technol. 36(24), 5863–5880 (2018).
    [Crossref]
  26. A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
    [Crossref]
  27. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
    [Crossref]
  28. A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
    [Crossref]
  29. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
    [Crossref]
  30. B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).
  31. E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
    [Crossref]
  32. A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly efficient holmium-doped all-fiber ~2.07-μm laser pumped by ytterbium-doped fiber laser at ~1.13 μm,” IEEE J. Sel. Topic Quantum Electron. 24 (5), art. no. 0903108 (2018).
  33. D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
    [Crossref]
  34. F. S. Richardson, “Selection rules for lanthanide optical activity,” Inorg. Chem. 19(9), 2806–2812 (1980).
    [Crossref]
  35. C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a ~2.1 – μm – Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
    [Crossref]
  36. M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
    [Crossref]
  37. B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
    [Crossref]
  38. E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
    [Crossref]
  39. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
    [Crossref]
  40. G. Zhu, X. Zhu, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Fe2+:ZnSe and graphene Q-switched singly Ho3+- doped ZBLAN fiber lasers at 3 μm,” Opt. Mater. Express 3(9), 1365–1377 (2013).
    [Crossref]
  41. S. Ono, “Optical properties and gain characteristics of erbium-doped fiber amplifier,” Ph.D. dissertation, Kyoto University, Kyoto, Japan (2005).
  42. L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
    [Crossref]
  43. F. Auzel and Y. H. Chen, “The effective frequency in multiphonon processes: Differences for energy transfers or side-bands and non-radiative decay,” J. Lumin. 66-67, 224–227 (1996).
  44. N. Simakov, “Development of components and fibers for the power scaling of pulsed holmium-doped fiber sources,” Ph.D. dissertation, F. Phys. Sci. Eng., Univ. of Southampton, Southampton, UK (2017).
  45. C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

2018 (2)

J. Wang, D. Yeom, N. Simakov, A. Hemming, A. Carter, S. B. Lee, and K. Lee, “Numerical modeling of in-band pumped Ho-doped silica fiber lasers,” J. Lightwave Technol. 36(24), 5863–5880 (2018).
[Crossref]

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

2016 (1)

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

2014 (3)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

X. Wang, P. Zhou, Y. Miao, H. Zhang, H. Xiao, X. Wang, and Z. Liu, “Raman fiber laser-pumped high-power, efficient Ho-doped fiber laser,” J. Opt. Soc. Am. B 31(10), 2476–2479 (2014).
[Crossref]

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

2013 (3)

2012 (3)

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

2011 (1)

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

2010 (4)

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 µm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

2009 (5)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

C. A. Evans, Z. Ikonić, B. Richards, P. Harrison, and A. Jha, “Numerical rate equation modeling of a ~2.1 – μm – Tm3+/Ho3+ co-doped tellurite fiber laser,” J. Lightwave Technol. 27(19), 4280–4288 (2009).
[Crossref]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

2008 (1)

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

2007 (1)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

2006 (1)

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

2004 (1)

S. D. Jackson and Y. Li, “High-power broadly tunable Ho3+-doped silica fibre laser,” Electron. Lett. 40(23), 1474–1475 (2004).
[Crossref]

2003 (1)

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm,” Appl. Phys. B 76(7), 793–795 (2003).
[Crossref]

1997 (1)

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
[Crossref]

1996 (2)

F. Auzel and Y. H. Chen, “The effective frequency in multiphonon processes: Differences for energy transfers or side-bands and non-radiative decay,” J. Lumin. 66-67, 224–227 (1996).

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

1995 (3)

Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
[Crossref]

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

1994 (1)

1993 (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

1980 (1)

F. S. Richardson, “Selection rules for lanthanide optical activity,” Inorg. Chem. 19(9), 2806–2812 (1980).
[Crossref]

1972 (1)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Antipov, S. O.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Ashton, B.

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

Askins, C.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Auzel, F.

F. Auzel and Y. H. Chen, “The effective frequency in multiphonon processes: Differences for energy transfers or side-bands and non-radiative decay,” J. Lumin. 66-67, 224–227 (1996).

Baker, C. C.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Balakrishnan, K.

Ballato, J. M.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Bayon, J.-F.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Bennetts, S.

Bowman, S.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Bowman, S. R.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

Brown, C.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Burdett, A. A.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Carter, A.

J. Wang, D. Yeom, N. Simakov, A. Hemming, A. Carter, S. B. Lee, and K. Lee, “Numerical modeling of in-band pumped Ho-doped silica fiber lasers,” J. Lightwave Technol. 36(24), 5863–5880 (2018).
[Crossref]

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
[Crossref]

Chen, Y. H.

F. Auzel and Y. H. Chen, “The effective frequency in multiphonon processes: Differences for energy transfers or side-bands and non-radiative decay,” J. Lumin. 66-67, 224–227 (1996).

Clarkson, W. A.

Condon, N.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Davidson, A.

Delevaque, E.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Dhar, A.

D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
[Crossref]

Donlan, V. L.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Dvoyrin, V. V.

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 µm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Evans, C. A.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Fleming, S.

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

Friebele, E.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Friebele, E. J.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Frith, G.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Georges, T.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Gomes, L.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
[Crossref]

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Harrison, P.

Haub, J.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
[Crossref]

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Hemming, A.

J. Wang, D. Yeom, N. Simakov, A. Hemming, A. Carter, S. B. Lee, and K. Lee, “Numerical modeling of in-band pumped Ho-doped silica fiber lasers,” J. Lightwave Technol. 36(24), 5863–5880 (2018).
[Crossref]

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fibre lasers,” Opt. Express 21(4), 4560–4566 (2013).
[Crossref] [PubMed]

S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
[Crossref]

A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
[Crossref]

Heo, J.

Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
[Crossref]

Hollitt, S.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

Ikonic, Z.

Izumitani, T.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Jackson, S. D.

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

S. D. Jackson, “High-power and highly efficient diode-cladding-pumped holmium-doped fluoride fiber laser operating at 2.94 µm,” Opt. Lett. 34(15), 2327–2329 (2009).
[Crossref] [PubMed]

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

S. D. Jackson and Y. Li, “High-power broadly tunable Ho3+-doped silica fibre laser,” Electron. Lett. 40(23), 1474–1475 (2004).
[Crossref]

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm,” Appl. Phys. B 76(7), 793–795 (2003).
[Crossref]

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

Jang, J.

Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
[Crossref]

Jayasankar, C. K.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Jha, A.

Kablukov, S. I.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kaczkan, M.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Kamynin, V. A.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kilian, A.

Kim, W.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Klimczak, M.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Koepke, C.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Kosolapov, A. F.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

Kucera, C.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Kurkov, A. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 µm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Lamouler, P.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Lancaster, D. G.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Lee, K.

Lee, S. B.

Li, Y.

S. D. Jackson and Y. Li, “High-power broadly tunable Ho3+-doped silica fibre laser,” Electron. Lett. 40(23), 1474–1475 (2004).
[Crossref]

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

Liu, Z.

Malinowski, M.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Marakulin, A. V.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at λ=1.15 µm,” Opt. Lett. 35(4), 490–492 (2010).
[Crossref] [PubMed]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Matsinger, B. H.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Medvedkov, O. I.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Miao, Y.

Minashina, L. A.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Monerie, M.

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Morse, T. F.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Norwood, R. A.

O’Connor, S.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Oermann, M.

A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
[Crossref]

Oh, K.

Oulundsen, G.

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

Pal, A.

D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
[Crossref]

Pal, D.

D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
[Crossref]

Peele, J.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Peng, B.

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

Peyghambarian, N.

Piatkowski, D.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Piramidowicz, R.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Pyrkov, Yu. N.

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Ranieri, I. M.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
[Crossref]

Raspopin, K. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Reinhart, L.

Richards, B.

Richardson, F. S.

F. S. Richardson, “Selection rules for lanthanide optical activity,” Inorg. Chem. 19(9), 2806–2812 (1980).
[Crossref]

Richardson, M.

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Rozanski, M.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Rukmini, E.

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Sabella, A.

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

Samson, B.

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Sanghera, J. S.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Sen, R.

D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
[Crossref]

Shah, L.

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

Shaw, L. B.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Shin, Y.

Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
[Crossref]

Sholokhov, E. M.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Simakov, N.

Simikov, N.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Sincore, A.

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

Slobodtchikov, E. V.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Smirnov, V.

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

Surratt, G. T.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Tarelho, L. V. G.

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
[Crossref]

Tsvetkov, V. B.

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

Vargas, A.

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Wall, K. F.

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

Wang, J.

Wang, X.

Weber, M. J.

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

Weber, P. M.

Wisniewski, K.

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Wright, B.

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

Xiao, H.

Yeom, D.

Zhang, H.

Zhao, Y.

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

Zhou, P.

Zhu, G.

Zhu, X.

Adv. Optoelectron. (1)

X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1 (2010).
[Crossref]

Appl. Phys. B (1)

S. D. Jackson, “2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm,” Appl. Phys. B 76(7), 793–795 (2003).
[Crossref]

Electron. Lett. (1)

S. D. Jackson and Y. Li, “High-power broadly tunable Ho3+-doped silica fibre laser,” Electron. Lett. 40(23), 1474–1475 (2004).
[Crossref]

IEEE J. Quantum Electron. (1)

S. D. Jackson, “Midinfrared holmium fiber lasers,” IEEE J. Quantum Electron. 42(2), 187–191 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. D. Jackson, A. Sabella, and D. G. Lancaster, “Application and development of high-power and highly efficient silica-based fiber lasers operating at 2 μm,” IEEE J. Sel. Top. Quantum Electron. 13(3), 567–572 (2007).
[Crossref]

P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron. 15(1), 85–92 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Delevaque, T. Georges, M. Monerie, P. Lamouler, and J.-F. Bayon, “Modeling of pair-induced quenching in erbium-doped silicate fibers,” IEEE Photonics Technol. Lett. 5(1), 73–75 (1993).
[Crossref]

Inorg. Chem. (1)

F. S. Richardson, “Selection rules for lanthanide optical activity,” Inorg. Chem. 19(9), 2806–2812 (1980).
[Crossref]

J. Chem. Phys. (1)

M. J. Weber, B. H. Matsinger, V. L. Donlan, and G. T. Surratt, “Optical transition probabilities for trivalent holmium in LaF3 and YAlO3,” J. Chem. Phys. 57(1), 562–567 (1972).
[Crossref]

J. Lightwave Technol. (2)

J. Lumin. (1)

F. Auzel and Y. H. Chen, “The effective frequency in multiphonon processes: Differences for energy transfers or side-bands and non-radiative decay,” J. Lumin. 66-67, 224–227 (1996).

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH absorption bands in synthetic silica,” J. Non-Cryst. Solids 203, 19–26 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

D. Piatkowski, K. Wisniewski, M. Rozanski, C. Koepke, M. Kaczkan, M. Klimczak, R. Piramidowicz, and M. Malinowski, “Excited state absorption spectroscopy of ZBLAN:Ho3+ glass—experiment and simulation,” J. Phys. Condens. Matter 20(15), 155201 (2008).
[Crossref]

Laser Photonics Rev. (1)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Laser Phys. Lett. (3)

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Dynamic behavior of laser based on the heavily holmium doped fiber,” Laser Phys. Lett. 7(8), 587–590 (2010).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, O. I. Medvedkov, V. V. Dvoyrin, Yu. N. Pyrkov, V. B. Tsvetkov, A. V. Marakulin, and L. A. Minashina, “Holmium fiber laser based on the heavily doped active fiber,” Laser Phys. Lett. 6(9), 661–664 (2009).
[Crossref]

LFW (1)

B. Samson, G. Oulundsen, A. Carter, and S. R. Bowman, “Holmium-doped silica fiber designs extend fiber lasers beyond 2 µm,” LFW 48(8), 47–50 (2012).

Opt. Express (3)

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (2)

B. Peng and T. Izumitani, “Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+,” Opt. Mater. 4(6), 797–810 (1995).
[Crossref]

E. Rukmini and C. K. Jayasankar, “Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses,” Opt. Mater. 4(4), 529–546 (1995).
[Crossref]

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

Y. Shin, J. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27(5), 379–386 (1995).
[Crossref]

Phys. Rev. B Condens. Matter (1)

L. V. G. Tarelho, L. Gomes, and I. M. Ranieri, “Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals,” Phys. Rev. B Condens. Matter 56(22), 14344–14351 (1997).
[Crossref]

Proc. SPIE (2)

E. Friebele, C. Askins, J. Peele, B. Wright, N. Condon, S. O’Connor, C. Brown, and S. Bowman, “Ho-doped fiber for high energy laser applications,” Proc. SPIE 8961, 896120 (2014).
[Crossref]

A. Sincore, L. Shah, V. Smirnov, and M. Richardson, “Comparison of in-band pumped Tm:fiber and Ho:fiber,” Proc. SPIE 9728, 97280 (2016).
[Crossref]

Proc. SPIE 10637. Laser Technology for Defense and Security (1)

C. C. Baker, E. J. Friebele, A. A. Burdett, L. B. Shaw, S. R. Bowman, W. Kim, J. S. Sanghera, J. M. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simikov, and J. Haub, “Recent advances in holmium doped fibers for high-energy lasers (Conference Presentation),” Proc. SPIE 10637. Laser Technology for Defense and Security XIV, 1063704 (2018).

Quantum Electron. (2)

A. S. Kurkov, E. M. Sholokhov, A. V. Marakulin, and L. A. Minashina, “Effect of active-ion concentration on holmium fibre laser efficiency,” Quantum Electron. 40(5), 386–388 (2010).
[Crossref]

A. S. Kurkov, E. M. Sholokhov, V. B. Tsvetkov, A. V. Marakulin, L. A. Minashina, O. I. Medvedkov, and A. F. Kosolapov, “Holmium fibre laser with record quantum efficiency,” Quantum Electron. 41(6), 492–494 (2011).
[Crossref]

Other (8)

J. W. Kim, A. Boyland, J. K. Sahu, and W. A. Clarkson, “Ho-doped silica fibre laser in-band pumped by a Tm-doped fibre laser,” in CLEO/Europe and EQEC (Optical Society of America, 2009), paper CJ6–5.

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable holmium-doped silica fibre lasers,” in Proceedings of 31st European Conference on Optical Communication, (IET, 2005), 679–680.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 μm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, B. Pal, ed. (InTech, 2010).

A. V. Kir’yanov, Y. O. Barmenkov, I. L. Villegas-Garcia, J. L. Cruz, and M. V. Andres, “Highly efficient holmium-doped all-fiber ~2.07-μm laser pumped by ytterbium-doped fiber laser at ~1.13 μm,” IEEE J. Sel. Topic Quantum Electron. 24 (5), art. no. 0903108 (2018).

D. Pal, A. Dhar, R. Sen, and A. Pal, “All-fiber holmium laser at 2.1 μm under in-band pumping,” in The International Conference on Fiber Optics and Photonics (Optical Society of America, 2016), paper Tu3E. 2.
[Crossref]

A. Hemming, N. Simakov, M. Oermann, A. Carter, and J. Haub, “Record efficiency of a holmium-doped silica fibre laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2016), paper SM3Q. 5.
[Crossref]

N. Simakov, “Development of components and fibers for the power scaling of pulsed holmium-doped fiber sources,” Ph.D. dissertation, F. Phys. Sci. Eng., Univ. of Southampton, Southampton, UK (2017).

S. Ono, “Optical properties and gain characteristics of erbium-doped fiber amplifier,” Ph.D. dissertation, Kyoto University, Kyoto, Japan (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified energy level diagram of Ho3+ which is of the five lowest energy levels. GSA: ground state absorption. ESA: excited state absorption. RD: radiative decay. NRD: non-radiative decay. ETU: energy transfer upconversion.
Fig. 2
Fig. 2 (a) Configuration of established Ho-doped fiber laser. TDFL: Tm-doped fiber laser. HDF: Ho-doped fiber. HR FBG: high reflectivity FBG. The length of Ho-doped fiber is variable. (b) Output spectrum of the Ho-doped fiber laser under the pump power of ~20 W. Fiber length: 1.9 m.
Fig. 3
Fig. 3 Measured and simulated transmission values as a function of the launched pump power for (a) 0.23 m fiber and (b) 0.55 m fiber. Exp.: experimental results.
Fig. 4
Fig. 4 (a) Experimental and simulated output power as a function of the absorbed pump power. Fiber length: 1.9 m. (b) Experimental and simulated slope efficiencies as a function of the fiber length. Exp: experimental results.
Fig. 5
Fig. 5 Spectrum of calculated ESA (5I75I4, in red solid line) and GSA (5I85I5 and 5I85I6, in blue dashed line) cross sections.
Fig. 6
Fig. 6 Experimental setup used for the measurement of the ESA spectrum. TDFL: Tm-doped fiber laser; SC: supercontinuum laser; HDF: 1.5 m SM-HDF-10/130 Ho-doped fiber.
Fig. 7
Fig. 7 Measured absorption spectrum of a 1.5 m SM-HDF-10/130 Ho-doped fiber under varying launched pump powers from 0 to 2.3 W.
Fig. 8
Fig. 8 Spectrum of calculated ESA (5I75I4, in red solid line), one-phonon sideband of ESA (5I75I4, in red dotted line, of which the amplitude is enlarged by 10 times), and GSA (5I85I6, in blue dashed line) cross sections.

Tables (1)

Tables Icon

Table 1 Reduced Matrix Elements and Transition Linewidths between Energy Levels of Ho3+

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

d N 0 dt = W 30 N 3 + W 20 N 2 + W 10 N 1 + W 11 N 1 2 + ( σ 10 N 1 σ 01 s N 0 ) Γ s λ s P s σ 01 p N 0 Γ p λ p P p hcA
d N 1 dt = W 31 N 3 + W 21 N 2 W 10 N 1 2 W 11 N 1 2 + σ 01 p N 0 Γ p λ p P p ( σ 10 N 1 σ 01 s N 0 ) Γ s λ s P s hcA
d N 2 dt = W 32 N 3 W 21 N 2 W 20 N 2
d N 3 dt = W 32 N 3 W 31 N 3 W 30 N 3 + W 11 N 1 2
N Ho = N 0 +N + 1 N 2 + N 3
d P p ± dz ={ Γ p σ 01 p N 0 + ξ p } P p ±
d P s ± dz =±{ Γ s σ 10 N 1 Γ s σ 01 s N 0 ξ s } P s ±
d N 0 i dt = W 10 N 1 i + W 11 ( N 1 i ) 2 + ( σ 10 N 1 i σ 01 s N 0 i ) Γ s λ s P s σ 01 p N 0 i Γ p λ p P p hcA
d N a c dt = W 10 N b c + ( σ 10 N b c 2 σ 01 s N a c ) Γ s λ s P s 2 σ 01 p N a c Γ p λ p P p hcA
d P p ± dz ={ Γ p σ 01 p [ N 0 i +2 N a c + N b c ]+ ξ p } P p ±
d P s ± dz =±{ Γ s σ 10 [ N 1 i + N b c ] Γ s σ 01 s [ N 0 i +2 N a c + N b c ] ξ s } P s ±
σ 14 ( ν ˜ )= e 2 4 ε 0 m e c 2 f 14 G( ν ˜ )
G( ν ˜ )= ln2 π B 2 exp[ ln2 B 2 ( ν ˜ ν ˜ 0 ) 2 ]
f 14 = 8 π 2 m e c ν m 3h(2J+1) ( n 2 +2) 2 9n S 14
S 14 = k=2,4,6 Ω k f n [SL]J U (k) f n [S'L']J' 2

Metrics