Abstract

We report a detailed study of the noise properties of a visible-to-telecom photon frequency converter based on difference frequency generation (DFG). The device converts 580 nm photons to 1541 nm using a strong pump laser at 930 nm, in a periodically poled lithium niobate ridge waveguide. The converter reaches a maximum device efficiency of 46 % (internal efficiency of 67%) at a pump power of 250 mW. The noise produced by the pump laser is investigated in detail by recording the noise spectra both in the telecom and visible regimes and measuring the power dependence of the noise rates. The noise spectrum in the telecom is very broadband, as expected from previous work on similar DFG converters. However, we also observe several narrow dips in the telecom spectrum, with corresponding peaks appearing in the 580 nm noise spectrum. These features are explained by sum frequency generation of the telecom noise at wavelengths given by the phase-matching condition of different spatial modes in the waveguide. The proposed noise model is in good agreement with all the measured data, including the power dependence of the noise rates, both in the visible and telecom regimes. These results are applicable to the class of DFG converters where the pump laser wavelength is in between the input and target wavelength.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band

Sebastian Zaske, Andreas Lenhard, and Christoph Becher
Opt. Express 19(13) 12825-12836 (2011)

Quantum frequency conversion of memory-compatible single photons from 606  nm to the telecom C-band

Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmatten
Optica 5(5) 507-513 (2018)

Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond

Rikizo Ikuta, Toshiki Kobayashi, Shuto Yasui, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Mikio Fujiwara, Takashi Yamamoto, Masato Koashi, Masahide Sasaki, Zhen Wang, and Nobuyuki Imoto
Opt. Express 22(9) 11205-11214 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
    [Crossref] [PubMed]
  2. P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
    [Crossref] [PubMed]
  3. C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
    [Crossref] [PubMed]
  4. K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
    [Crossref] [PubMed]
  5. N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
    [Crossref] [PubMed]
  6. D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
    [Crossref] [PubMed]
  7. G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
    [Crossref]
  8. C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).
  9. J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
    [Crossref]
  10. T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
    [Crossref]
  11. A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
    [Crossref]
  12. N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band,” Optica 5, 507 (2018).
    [Crossref]
  13. H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
    [Crossref]
  14. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
    [Crossref] [PubMed]
  15. S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
    [Crossref] [PubMed]
  16. R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205 (2014).
    [Crossref] [PubMed]
  17. S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
    [Crossref]
  18. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
    [Crossref]
  19. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
    [Crossref]
  20. N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
    [Crossref]
  21. S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825 (2011).
    [Crossref] [PubMed]
  22. J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510 (2012).
    [Crossref] [PubMed]
  23. X. Fernandez-Gonzalvo, G. Corrielli, B. Albrecht, M. Grimau, M. Cristiani, and H. de Riedmatten, “Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths,” Opt. Express 21, 19473 (2013).
    [Crossref] [PubMed]
  24. P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43, 2034 (2018).
    [Crossref] [PubMed]
  25. J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
    [Crossref] [PubMed]
  26. V. Esfandyarpour, C. Langrock, and M. Fejer, “Cascaded downconversion interface to convert single-photon-level signals at 650 nm to the telecom band,” Opt. Lett. 43, 5655 (2018).
    [Crossref] [PubMed]
  27. J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
    [Crossref]
  28. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725 (2005).
    [Crossref] [PubMed]

2019 (1)

J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
[Crossref]

2018 (8)

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band,” Optica 5, 507 (2018).
[Crossref]

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

P. S. Kuo, J. S. Pelc, C. Langrock, and M. M. Fejer, “Using temperature to reduce noise in quantum frequency conversion,” Opt. Lett. 43, 2034 (2018).
[Crossref] [PubMed]

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

V. Esfandyarpour, C. Langrock, and M. Fejer, “Cascaded downconversion interface to convert single-photon-level signals at 650 nm to the telecom band,” Opt. Lett. 43, 5655 (2018).
[Crossref] [PubMed]

2017 (3)

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

2016 (1)

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

2015 (1)

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

2014 (4)

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

R. Ikuta, T. Kobayashi, S. Yasui, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, T. Yamamoto, M. Koashi, M. Sasaki, Z. Wang, and N. Imoto, “Frequency down-conversion of 637 nm light to the telecommunication band for non-classical light emitted from NV centers in diamond,” Opt. Express 22, 11205 (2014).
[Crossref] [PubMed]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

2013 (1)

2012 (3)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
[Crossref]

J. S. Pelc, L. Yu, K. D. Greve, P. L. McMahon, C. M. Natarajan, V. Esfandyarpour, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, Y. Yamamoto, and M. M. Fejer, “Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel,” Opt. Express 20, 27510 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (1)

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

2006 (1)

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

2005 (1)

Abellán, C.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Afzelius, M.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

Albrecht, B.

Albrecht, R.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Amaya, W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Arend, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Beavan, S. E.

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

Becher, C.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825 (2011).
[Crossref] [PubMed]

Becker, J. N.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Bernien, H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Blok, M. S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Bonato, C.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

Brecht, B.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Carter, A.

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Cohen, J.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Corrielli, G.

Cova, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Cristiani, M.

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

X. Fernandez-Gonzalvo, G. Corrielli, B. Albrecht, M. Grimau, M. Cristiani, and H. de Riedmatten, “Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths,” Opt. Express 21, 19473 (2013).
[Crossref] [PubMed]

Crocker, C.

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

de Riedmatten, H.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band,” Optica 5, 507 (2018).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

X. Fernandez-Gonzalvo, G. Corrielli, B. Albrecht, M. Grimau, M. Cristiani, and H. de Riedmatten, “Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths,” Opt. Express 21, 19473 (2013).
[Crossref] [PubMed]

Diamanti, E.

Dréau, A.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

Dréau, A. E.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Duan, L.-M.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Elkouss, D.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Esfandyarpour, V.

Etesse, J.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

Farrera, P.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

Fejer, M.

Fejer, M. M.

Ferguson, K. R.

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

Fernandez-Gonzalvo, X.

Forchel, A.

Francis-Jones, R. J. A.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Fujiwara, M.

Gawith, C. B. E.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Gisin, N.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Greve, K. D.

Grimau, M.

Ha, J.-H.

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

Hadfield, R. H.

Hannegan, J.

J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
[Crossref]

Hanson, R.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Heinze, G.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band,” Optica 5, 507 (2018).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

Hensen, B.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Hepp, C.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Höfling, S.

Hong, F.-L.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Horikiri, T.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Hucul, D.

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

Humphreys, P. C.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

Ikeda, K.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Ikuta, R.

Imoto, N.

Inlek, I. V.

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

Jetter, M.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Jobez, P.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

Kalb, N.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Kambs, B.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Kamp, M.

Kang, T.-Y.

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

Kern, S.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Keßler, C. A.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Kettler, J.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Koashi, M.

Kobayashi, T.

Kosaka, H.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Krainer, L.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Kuo, P. S.

Kutluer, K.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Lago-Rivera, D.

Langrock, C.

Laplane, C.

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

Ledingham, P. M.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Lee, H.-Y.

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

Lenhard, A.

Lichtman, M.

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Longdell, J. J.

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

Luo, K.-H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Ma, L.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
[Crossref]

Mahdaoui, A. E.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

Maier, S.

Maisch, J.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Maring, N.

N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de Riedmatten, “Quantum frequency conversion of memory-compatible single photons from 606 nm to the telecom C-band,” Optica 5, 507 (2018).
[Crossref]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

Markham, M.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Matsukevich, D. N.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Maunz, P.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Mazzera, M.

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

McMahon, P. L.

Michler, P.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Miki, S.

Mitchell, M. W.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Moehring, D. L.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Monroe, C.

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Morits, J. P. J.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

Mosley, P. J.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Natarajan, C. M.

Nunn, J.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Okamura, K.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Olmschenk, S.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Park, J.-H.

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

Pelc, J. S.

Portalupi, S. L.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Pruneri, V.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Quraishi, Q.

J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
[Crossref]

Rech, I.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Reiserer, A.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Rochas, A.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Roussev, R. V.

Ruitenberg, J.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Rütz, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Sasaki, M.

Scarano, S.

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Schneider, C.

Schouten, R. N.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Schulz, W.-M.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

Sellars, M. J.

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

Silberhorn, C.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Siverns, J. D.

J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
[Crossref]

Slattery, O.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
[Crossref]

Smith, P. G. R.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Sosnova, K.

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Suche, H.

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Takesue, H.

Taminiau, T. H.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Tamura, S.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Tang, X.

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
[Crossref]

Tanzilli, S.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Tcheborateva, A.

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

Terai, H.

Thew, R. T.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Twitchen, D. J.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Vermeulen, R. F. L.

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Vittorini, G.

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

Vural, H.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Walmsley, I. A.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Wang, Z.

Weber, J. H.

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Wehner, S.

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

Wright, T. A.

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

Yamamoto, T.

Yamamoto, Y.

Yamashita, T.

Yasui, S.

Yoshii, K.

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

Younge, K. C.

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

Yu, L.

Zaske, S.

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

S. Zaske, A. Lenhard, and C. Becher, “Efficient frequency downconversion at the single photon level from the red spectral range to the telecommunications C-band,” Opt. Express 19, 12825 (2011).
[Crossref] [PubMed]

Zbinden, H.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zeller, S. C.

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Zhang, Q.

Jpn. J. Appl. Phys. (2)

S. Tamura, K. Ikeda, K. Okamura, K. Yoshii, F.-L. Hong, T. Horikiri, and H. Kosaka, “Two-step frequency conversion for connecting distant quantum memories by transmission through an optical fiber,” Jpn. J. Appl. Phys. 57, 062801 (2018).
[Crossref]

J.-H. Park, T.-Y. Kang, J.-H. Ha, and H.-Y. Lee, “Spatial mode behavior of second harmonic generation in a ridge-type waveguide with a periodically poled MgO-doped lithium niobate crystal,” Jpn. J. Appl. Phys. 53, 062201 (2014).
[Crossref]

Nat. Nanotechnol. (1)

J. H. Weber, B. Kambs, J. Kettler, S. Kern, J. Maisch, H. Vural, M. Jetter, S. L. Portalupi, C. Becher, and P. Michler, “Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters,” Nat. Nanotechnol. 14, 23–26 (2018).
[Crossref] [PubMed]

Nature (4)

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, “Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682–686 (2015).
[Crossref] [PubMed]

P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N. Schouten, R. F. L. Vermeulen, D. J. Twitchen, M. Markham, and R. Hanson, “Deterministic delivery of remote entanglement on a quantum network,” Nature 558, 268–273 (2018).
[Crossref] [PubMed]

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, “Photonic quantum state transfer between a cold atomic gas and a crystal,” Nature 551, 485–488 (2017).
[Crossref] [PubMed]

D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, “Entanglement of single-atom quantum bits at a distance,” Nature 449, 68–71 (2007).
[Crossref] [PubMed]

New J. Phys. (2)

N. Maring, K. Kutluer, J. Cohen, M. Cristiani, M. Mazzera, P. M. Ledingham, and H. de Riedmatten, “Storage of up-converted telecom photons in a doped crystal,” New J. Phys. 16, 113021 (2014).
[Crossref]

R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, “Low jitter up-conversion detectors for telecom wavelength GHz QKD,” New J. Phys. 8, 32 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Optica (1)

Phys. Reports (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Reports 521, 69–94 (2012).
[Crossref]

Phys. Rev. A (1)

G. Vittorini, D. Hucul, I. V. Inlek, C. Crocker, and C. Monroe, “Entanglement of distinguishable quantum memories,” Phys. Rev. A 90, 040302(R) (2014).
[Crossref]

Phys. Rev. Appl. (4)

J. D. Siverns, J. Hannegan, and Q. Quraishi, “Neutral-atom wavelength-compatible 780 nm single photons from a trapped ion via quantum frequency conversion,” Phys. Rev. Appl. 11, 014044 (2019).
[Crossref]

T. A. Wright, R. J. A. Francis-Jones, C. B. E. Gawith, J. N. Becker, P. M. Ledingham, P. G. R. Smith, J. Nunn, P. J. Mosley, B. Brecht, and I. A. Walmsley, “Two-way photonic interface for linking the Sr+ transition at 422 nm to the telecommunication C band,” Phys. Rev. Appl. 10, 044012 (2018).
[Crossref]

A. Dréau, A. Tcheborateva, A. E. Mahdaoui, C. Bonato, and R. Hanson, “Quantum frequency conversion of single photons from a nitrogen-vacancy center in diamond to telecommunication wavelengths,” Phys. Rev. Appl. 9, 064031 (2018).
[Crossref]

H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, “Quantum frequency conversion between infrared and ultraviolet,” Phys. Rev. Appl. 7, 024021 (2017).
[Crossref]

Phys. Rev. Lett. (3)

S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and C. Becher, “Visible-to-telecom quantum frequency conversion of light from a single quantum emitter,” Phys. Rev. Lett. 109, 147404 (2012).
[Crossref] [PubMed]

C. Laplane, P. Jobez, J. Etesse, N. Gisin, and M. Afzelius, “Multimode and long-lived quantum correlations between photons and spins in a crystal,” Phys. Rev. Lett. 118, 210501 (2017).
[Crossref] [PubMed]

K. R. Ferguson, S. E. Beavan, J. J. Longdell, and M. J. Sellars, “Generation of light with multimode time-delayed entanglement using storage in a solid-state spin-wave quantum memory,” Phys. Rev. Lett. 117, 020501 (2016).
[Crossref] [PubMed]

Other (1)

C. Crocker, M. Lichtman, K. Sosnova, A. Carter, S. Scarano, and C. Monroe, “High purity single photons entangled with an atomic memory,” arXiv 1812.01749 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Implementation of the frequency conversion. (a) Overview of the DFG conversion process from 580 nm to 1541 nm, together with the different pump-induced noise processes. The noise processes are the non-phase-matched SPDC by the strong pump beam at 930 nm and the phase-matched SFG of part of the SPDC noise into the visible domain around 580 nm. The SFG process occurs for the fundamental spatial mode at a wavelength of 1541 nm, but also for higher-order spatial modes at other wavelengths. (b) Schematic of the experimental setup. The pump light at 930 nm is amplified and its spatial mode is cleaned by a single-mode fiber. The pump beam is overlapped with the laser beams at 580 nm and 1541 nm using dichroic mirrors (DMs). Quarter (λ/4) and half (λ/2) waveplates align the polarizations to the vertical axis of the PPLN waveguide. All laser beams are coupled into the PPLN waveguide. At the output they are again separated by DMs and directed to different setups for the noise and efficiency measurements, as explained in detail in Section 2. ECDL = external-cavity diode laser, SPAD = single-photon avalanche diode, TG = tunable grating filter from JDS Uniphase (TB9226), BP = band-pass filter.
Fig. 2
Fig. 2 Sum frequency generation (SFG) measurement. (a) Measured SFG signal efficiency as a function of the telecom laser wavelength for a coupled pump power of 440 mW. The vertical scale shows the external SFG conversion efficiency, defined in the same way as the DFG conversion efficiency discussed in Section 3.3. The horizontal top scale shows the expected SFG wavelengths, which is calculated using energy conservation and taking into account that the pump wavelength is at 930 nm. The three main SFG modes were imaged onto a CCD camera, from which the following spatial modes could be identified: (b) TEM00 at 1541.0 nm = ^ 580.0 nm, (c) TEM01 at 1546.0 nm = ^ 580.7 nm, and (d) TEM02 at 1554.6 nm = ^ 581.9 nm. The weaker SFG signals at 1550.8 nm = ^ 581.4 nm, 1559.3 nm = ^ 582.6 nm and 1566.1 nm = ^ 583.5 nm correspond to the spatial modes TEM11, TEM12, and TEM22, respectively.
Fig. 3
Fig. 3 Spectrally resolved noise measurements at a coupled pump power of 440 mW. (a) The broadband noise spectrum at the telecom C-band shows dips due to the SFG conversion of noise photons in the TEM00 and TEM01 spatial modes identified in Fig. 2. The TG filter scan had a step size of 0.1 nm. Each data point represents the average count rate integrated over 10 s. The slight drop in count rate below 1525 nm is due to the transmission profile of one of the DMs. Inset: Higher resolution scan of the dip at 1541 nm using a TG step size of 0.04 nm. (b) The noise spectrum recorded in the 580 nm range recorded with the spectrometer using a CCD integration time of 300 s. The 580 nm output from the waveguide was coupled into either a single-(solid line) or multi-mode (dashed line) fiber, which explains the difference in sensitivity to higher order spatial modes. The spectral resolution is limited by the resolution of the home-made spectrometer.
Fig. 4
Fig. 4 Power dependence of the DFG efficiency and noise rates normalized to the output of the waveguide. (a) External, ηext, and internal, ηint, DFG conversion efficiencies. The solid lines represents fits to Eq. 1. (b) Telecom noise rate measured through the 200 pm TG filter tuned to the phase-matching wavelength of 1541 nm (solid circles), centered on the dip shown in the inset of Fig. 3(a), or detuned by 1 nm from this wavelength (open circles). The detuned data points represent the average noise rate measured at ±1 nm from the 1541 nm dip. The dashed line is a linear fit of the first four points for the detuned case. The solid line represent a model taking into account the SFG noise reduction, as detailed in Section 3.3. (c) Visible noise rate measured through the BP filter centered at 580 nm (cf. Fig. 3(b)). The dashed and solid lines represent the quadratic power dependence model and the model in Eq. (4), respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η ( P p ) = η max sin 2 ( L η n P p ) ,
R tele ( P p ) = α N P p 0 L ( 1 η max sin 2 ( x η n P p ) ) d x
  = α N P p L ( 1 η max 2 ( 1 sin ( 2 L η n P p ) 2 L η n P p ) ) ,
R vis ( P p ) = α N P p L η max 2 ( 1 sin ( 2 L η n P p ) 2 L η n P p ) .

Metrics