Abstract

We propose and experimentally demonstrate a reconfigurable microwave photonic filter based on temporal Talbot effects. The microwave signal is first uniformly sampled by a train of optical pulses through electro-optic intensity modulation. The sampled optical pulses are then directed to a Talbot-based optical signal processor, consisting of an electro-optic temporal phase modulator and a chromatic dispersion line. The Talbot-based microwave photonic filter (TMPF) exploits the inherent properties of the Talbot self-imaging effect for mitigating pulse-to-pulse intensity fluctuations of optical pulses to transmit some fluctuation frequencies and mitigate or entirely block other microwave spectral components. The output microwave signal is finally reconstructed from the processed optical pulses and the resultant RF response is measured by a network analyzer. The TMPF exhibits an RF response with periodic, symmetric-profile passbands whose center frequency and free spectral range (FSR) are defined by the sampling rate and the dispersion value. The filter passbands can be reconfigured electrically, in discrete steps, by adjusting the modulation function of the phase modulator, i.e., without the need for manual adjustment of the optical components. This enables the capability of selection of specific passbands among the primary passbands. The phase modulation function is provided using an arbitrary waveform generator, with the potential for fast tuning of the filter’s spectral response. The bandwidth of the filter passband can also be easily customized by adjusting the sampling pulse’s temporal width using an optical bandpass filter. Examples of filter performance in various passband configurations are also presented in the time domain to further validate the operation of the filter.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel programmable microwave photonic filter with arbitrary filtering shape and linear phase

Xiaoqi Zhu, Feiya Chen, Huanfa Peng, and Zhangyuan Chen
Opt. Express 25(8) 9232-9243 (2017)

Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps

Minhyup Song, Victor Torres-Company, Rui Wu, Andrew J. Metcalf, and Andrew M. Weiner
Opt. Express 22(6) 6329-6338 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
    [Crossref]
  2. S. Iezekiel, Microwave Photonics: Devices and Applications (John Wiley & Sons, 2009).
  3. V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics (Wiley, 2015).
  4. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  5. L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
    [Crossref]
  6. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
    [Crossref]
  7. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  8. K. Wilner and A. P. Va den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64(5), 805–807 (1976).
    [Crossref]
  9. J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
    [Crossref]
  10. M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” Photonics 4, 45 (2017).
  11. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36(19), 4312–4318 (2018).
    [Crossref]
  12. R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).
  13. Q. Liu, J. Ge, and M. P. Fok, “Microwave photonic multiband filter with independently tunable passband spectral properties,” Opt. Lett. 43(22), 5685–5688 (2018).
    [Crossref] [PubMed]
  14. M. Li and N. Zhu, “Recent advances in microwave photonics,” Front Optoelectron. 9(2), 160–185 (2016).
    [Crossref]
  15. H. Chen, Z. Xu, H. Fu, S. Zhang, C. Wu, H. Wu, H. Xu, and Z. Cai, “Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter,” Opt. Express 23(8), 9835–9843 (2015).
    [Crossref] [PubMed]
  16. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
    [Crossref] [PubMed]
  17. Y. Long and J. Wang, “All-optical tuning of a nonlinear silicon microring assisted microwave photonic filter: theory and experiment,” Opt. Express 23(14), 17758–17771 (2015).
    [Crossref] [PubMed]
  18. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
    [Crossref]
  19. J. Ge and M. P. Fok, “Reconfigurable RF multiband filter with widely tunable passbands based on cascaded optical interferometric filters,” J. Lightwave Technol. 36(14), 2933–2940 (2018).
    [Crossref]
  20. Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
    [Crossref]
  21. M. I. Comanici, L. R. Chen, and P. Kung, “Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors,” Appl. Opt. 56(32), 9074–9078 (2017).
    [Crossref] [PubMed]
  22. R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
    [Crossref]
  23. R. Maram, L. Romero Cortes, J. Van Howe, and J. Azana, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal Talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
    [Crossref]
  24. J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
    [Crossref]
  25. R. R. Maram, L. Romero Cortes, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” J. Lightwave Technol. 34(2), 5403–5406 (2016).
    [Crossref]
  26. J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive Talbot optical waveform amplifier,” Opt. Express 26(6), 6872–6879 (2018).
    [Crossref] [PubMed]
  27. D. Pudo and L. Chen, “Simple estimation of pulse amplitude noise and timing jitter evolution through the temporal Talbot effect,” Opt. Express 15(10), 6351–6357 (2007).
    [Crossref] [PubMed]
  28. R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
    [Crossref]
  29. C. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25(10), 2898–2903 (2007).
    [Crossref]
  30. R. Maram, L. R. Cortés, and J. Azaña, “Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging,” Opt. Express 23(3), 3602–3613 (2015).
    [Crossref] [PubMed]
  31. Tektronix, https://www.tek.com/datasheet/arbitrary-waveform-generators-7 .
  32. D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
    [Crossref]
  33. J. H. Lee, Y. Chang, Y. G. Han, S. Kim, and S. Lee, “2 ~ 5 times tunable repetition-rate multiplication of a 10 GHz pulse source using a linearly tunable, chirped fiber Bragg grating,” Opt. Express 12(17), 3900–3905 (2004).
    [Crossref] [PubMed]

2019 (1)

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

2018 (6)

2017 (4)

2016 (3)

M. Li and N. Zhu, “Recent advances in microwave photonics,” Front Optoelectron. 9(2), 160–185 (2016).
[Crossref]

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

R. R. Maram, L. Romero Cortes, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” J. Lightwave Technol. 34(2), 5403–5406 (2016).
[Crossref]

2015 (5)

2013 (2)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

2012 (1)

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

2010 (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

2007 (2)

2006 (1)

2004 (1)

2001 (1)

J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

1976 (1)

K. Wilner and A. P. Va den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64(5), 805–807 (1976).
[Crossref]

Adams, R.

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

Azana, J.

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

R. Maram, L. Romero Cortes, J. Van Howe, and J. Azana, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal Talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
[Crossref]

J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
[Crossref]

Azaña, J.

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive Talbot optical waveform amplifier,” Opt. Express 26(6), 6872–6879 (2018).
[Crossref] [PubMed]

R. R. Maram, L. Romero Cortes, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” J. Lightwave Technol. 34(2), 5403–5406 (2016).
[Crossref]

R. Maram, L. R. Cortés, and J. Azaña, “Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging,” Opt. Express 23(3), 3602–3613 (2015).
[Crossref] [PubMed]

Bai, G.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Burla, M.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

Cai, Z.

Capmany, J.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
[Crossref]

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24(1), 201–229 (2006).
[Crossref]

Casas-Bedoya, A.

Chang, Y.

Chen, H.

Chen, L.

Chen, L. R.

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

M. I. Comanici, L. R. Chen, and P. Kung, “Microwave photonic filter-based interrogation system for multiple fiber Bragg grating sensors,” Appl. Opt. 56(32), 9074–9078 (2017).
[Crossref] [PubMed]

C. Pudo, M. Depa, and L. R. Chen, “Single and multiwavelength all-optical clock recovery in single-mode fiber using the temporal Talbot effect,” J. Lightwave Technol. 25(10), 2898–2903 (2007).
[Crossref]

R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
[Crossref]

Comanici, M. I.

Cortés, L. R.

Depa, M.

Doménech, D.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
[Crossref]

Dong, J.

Eggleton, B. J.

Fandiño, J. S.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
[Crossref]

Ferdous, F.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Fok, M.

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” Photonics 4, 45 (2017).

Fok, M. P.

Fu, H.

Ge, J.

Hamidi, E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Han, Y. G.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Hu, X.

Huo, L.

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

Iezekiel, S.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

Jeon, J.

J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive Talbot optical waveform amplifier,” Opt. Express 26(6), 6872–6879 (2018).
[Crossref] [PubMed]

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

Jiang, Y.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Kaushal, S.

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

Kim, S.

Klamkin, J.

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

Kung, P.

Leaird, D. E.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Lee, J. H.

Lee, S.

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Li, H.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Li, M.

M. Li and N. Zhu, “Recent advances in microwave photonics,” Front Optoelectron. 9(2), 160–185 (2016).
[Crossref]

Li, X. Z.

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

Liu, Q.

Long, C. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Long, Y.

Lou, C.

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

Ma, M.

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

Maram, R.

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

J. Jeon, R. Maram, J. van Howe, and J. Azaña, “Programmable passive Talbot optical waveform amplifier,” Opt. Express 26(6), 6872–6879 (2018).
[Crossref] [PubMed]

R. Maram, L. Romero Cortes, J. Van Howe, and J. Azana, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal Talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
[Crossref]

R. Maram, L. R. Cortés, and J. Azaña, “Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging,” Opt. Express 23(3), 3602–3613 (2015).
[Crossref] [PubMed]

R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
[Crossref]

Maram, R. R.

R. R. Maram, L. Romero Cortes, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” J. Lightwave Technol. 34(2), 5403–5406 (2016).
[Crossref]

Marpaung, D.

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett. 40(17), 4154–4157 (2015).
[Crossref] [PubMed]

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Morrison, B.

Moslemi, P.

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

Muñoz, P.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
[Crossref]

Muriel, M. A.

J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

Onori, D.

R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
[Crossref]

Ortega, B.

Pagani, M.

Pastor, D.

Pudo, C.

Pudo, D.

Qie, J.

Qiu, H.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Romero Cortes, L.

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

R. Maram, L. Romero Cortes, J. Van Howe, and J. Azana, “Energy-preserving arbitrary repetition-rate control of periodic pulse trains using temporal Talbot effects,” J. Lightwave Technol. 35(4), 658–668 (2017).
[Crossref]

R. R. Maram, L. Romero Cortes, and J. Azaña, “Programmable fiber-optics pulse repetition-rate multiplier,” J. Lightwave Technol. 34(2), 5403–5406 (2016).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Seghilani, M.

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

Shum, P. P.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Supradeepa, V. R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Va den Heuvel, A. P.

K. Wilner and A. P. Va den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64(5), 805–807 (1976).
[Crossref]

van Howe, J.

Wang, D.

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

Wang, J.

Wang, Q.

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

Wang, S. A.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Wang, Z.

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

Weiner, A. M.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Wilner, K.

K. Wilner and A. P. Va den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64(5), 805–807 (1976).
[Crossref]

Wu, C.

Wu, H.

Wu, R.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Xiao, X.

Xu, H.

Xu, J.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Xu, Z.

Yao, Y.

Yu, Y.

Zhang, S.

Zhang, X.

Zhang, Y.

Zhou, F.

Zhou, J.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Zhou, Z.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Zhu, N.

M. Li and N. Zhu, “Recent advances in microwave photonics,” Front Optoelectron. 9(2), 160–185 (2016).
[Crossref]

Zu, P.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

Appl. Opt. (1)

Front Optoelectron. (1)

M. Li and N. Zhu, “Recent advances in microwave photonics,” Front Optoelectron. 9(2), 160–185 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azana and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron. 7(4), 728–744 (2001).
[Crossref]

IEEE Microw. Mag. (1)

S. Iezekiel, M. Burla, J. Klamkin, D. Marpaung, and J. Capmany, “RF engineering meets optoelectronics: Progress in integrated microwave photonics,” IEEE Microw. Mag. 16(8), 28–45 (2015).
[Crossref]

IEEE Photonics J. (1)

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. A. Wang, “A selectable multiband bandpass microwave photonic filter,” IEEE Photonics J. 5(3), 5500509 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. R. Chen, P. Moslemi, Z. Wang, M. Ma, and R. Adams, “Integrated microwave photonics for spectral analysis, waveform generation, and filtering,” IEEE Photonics Technol. Lett. 30(21), 1838–1841 (2018).
[Crossref]

R. Maram, M. Seghilani, J. Jeon, X. Z. Li, L. Romero Cortes, J. van Howe, and J. Azana, “Demonstration of input-to-output gain and temporal noise mitigation in a talbot amplifier,” IEEE Photonics Technol. Lett. 30(8), 665–668 (2018).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (6)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Photonics (2)

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated microwave photonics filter,” Nat. Photonics 11, 124–129 (2017).
[Crossref]

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012).
[Crossref]

Opt. Commun. (1)

D. Wang, L. Huo, Q. Wang, and C. Lou, “Performance optimization of ultra-short optical pulse generation based on Mamyshev reshaping and its application in 100-Gb/s and 200-Gb/s optical time-division multiplexing,” Opt. Commun. 364, 76–82 (2016).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Photonics (2)

M. Fok and J. Ge, “Tunable multiband microwave photonic filters,” Photonics 4, 45 (2017).

R. Maram, S. Kaushal, J. Azaña, and L. R. Chen, “Recent trends and advances of silicon-based integrated microwave photonics,” Photonics 6, 13 (2019).

Proc. IEEE (1)

K. Wilner and A. P. Va den Heuvel, “Fiber-optic delay lines for microwave signal processing,” Proc. IEEE 64(5), 805–807 (1976).
[Crossref]

Other (4)

R. Maram, D. Onori, J. Azana, and L. R. Chen, “Programmable fiber-optics microwave photonic filter based on temporal Talbot effects,” in International Topical Meeting on Microwave Photonics (IEEE, 2018), pp. 1–4.
[Crossref]

S. Iezekiel, Microwave Photonics: Devices and Applications (John Wiley & Sons, 2009).

V. J. Urick, K. J. Williams, and J. D. McKinney, Fundamentals of Microwave Photonics (Wiley, 2015).

Tektronix, https://www.tek.com/datasheet/arbitrary-waveform-generators-7 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Proposed Talbot-based microwave photonic filter, (b) Transfer function of the microwave filter for the phase-modulation parameters of m = 1 and 2. MZM: Mach-Zehnder modulator, PM: phase modulator, PD: photo-detector, freq: frequency.
Fig. 2
Fig. 2 Experimental setup of the programmable microwave photonic filtering technique based on temporal Talbot effects. MLL: mode-locked laser, T-BPF: tunable optical bandpass filter, RFS: RF synthesizer, PC: polarization controller, MZM: Mach-Zehnder modulator, EOPM: electro-optic phase modulator, PD: photodetector, VNA – vector network analyzer, RF att: RF attenuator, RFA: RF amplifier.
Fig. 3
Fig. 3 Prescribed temporal phase modulation profiles; ideal phase profiles (dashed red) and measured phase drives delivered by the AWG (solid blue) with a section of the modulated optical pulses in the background (dotted green).
Fig. 4
Fig. 4 Measured frequency response of the demonstrated TMPF for the three phase modulation parameters in Fig. 3, corresponding to m = 1, 2 and 3. The dashed red lines across the three frequency responses show the location of the RF tones that are used for evaluation of the TMPF.
Fig. 5
Fig. 5 Measured frequency response of microwave photonic filter for several sampling pulse widths.
Fig. 6
Fig. 6 Measured RF spectra and time traces of ((a) and (b)) the input RF waveform and (c and d) the sampled optical sequence.
Fig. 7
Fig. 7 Results of processing of the input RF signal, shown in Fig. 6(b), with the TMPF in three filter configurations, corresponding to the phase-modulation factors m = 1, 2 and 3 (frequency responses shown in Fig. 4). (a)–(c) measured RF spectra and (d)–(f) time traces of the optical pulses at the output of the TMPF; (g)–(l) temporal traces of the extracted envelope of each of the photo-detected pulse sequences (the DC component is eliminated).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

φ m =( s m ) ( [ 1 s ] m ) 2 π n 2 ,
φ m =2( s m ) [ 1 2 ] m ( [ 1 2s ] m ) 2 π ( 2n+m ) 2
ϕ 2 =( qm+ms )m z T β 2
f r =p F r =p ( m×T ) 2π ϕ 2
B W RF,3dB = Δ t FWHM 2π ϕ 2

Metrics