M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]
[PubMed]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]
[PubMed]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]
[PubMed]
L. Huang, S. J. Maerkl, and O. J. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
[Crossref]
[PubMed]
M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]
[PubMed]
K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]
[PubMed]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]
A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref]
[PubMed]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref]
[PubMed]
A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref]
[PubMed]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]
[PubMed]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]
[PubMed]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]
[PubMed]
M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]
M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]
P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]
M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]
[PubMed]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]
J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]
M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]
[PubMed]
M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]
[PubMed]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]
M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]
[PubMed]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]
[PubMed]
J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]
T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]
[PubMed]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]
[PubMed]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]
[PubMed]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]
M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]
J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]
P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]
Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]
M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]
Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]
T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref]
[PubMed]
P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref]
[PubMed]
B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref]
[PubMed]
M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref]
[PubMed]
A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref]
[PubMed]
K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref]
[PubMed]
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]
M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]
M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]
M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]
D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref]
[PubMed]
A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]
M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref]
[PubMed]
G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref]
[PubMed]
X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]
O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]
A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref]
[PubMed]
K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref]
[PubMed]
K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]
S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref]
[PubMed]
J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]
[PubMed]
M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref]
[PubMed]
U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.