Abstract

We report a novel microwave photonic phase and amplitude control structure based on a single microring resonator with a tunable Mach Zehnder interferometer reflective loop, which enables the realization of a continuously tunable microwave photonic phase shifter with enhanced phase tuning range while simultaneously compensating for the RF power variations. The complimentary tuning of the phase and amplitude presents a simplistic approach to resolve the inherent trade-off between maintaining a full RF phase shift while eliminating large RF power variations. Detailed simulations have been carried out to analyze the performance of the new structure as a microwave photonic phase shifter, where the reflective nature of the proposed configuration shows an effective doubling of the phase range while the amplitude compensation module provides a parallel control to potentially reduce the RF amplitude variations to virtually zero. The phase range enhancement, which is first verified experimentally with a passive only chip, demonstrates the capability to achieve a continuously tunable RF phase shift of 0–510° with an RF amplitude variation of 9 dB. Meanwhile, the amplitude compensation scheme is incorporated onto an active chip with a continuously tunable RF phase shift of 0–150°, where the RF power variations is shown to be reduced by 5 dB while maintaining a constant RF phase shift.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator

Minhao Pu, Liu Liu, Weiqi Xue, Yunhong Ding, Haiyan Ou, Kresten Yvind, and Jørn M. Hvam
Opt. Express 18(6) 6172-6182 (2010)

Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter

Juan Lloret, Geert Morthier, Francisco Ramos, Salvador Sales, Dries Van Thourhout, Thijs Spuesens, Nicolas Olivier, Jean-Marc Fédéli, and José Capmany
Opt. Express 20(10) 10796-10806 (2012)

Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering

Mattia Pagani, David Marpaung, Duk-Yong Choi, Steve J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton
Opt. Express 22(23) 28810-28818 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
    [Crossref] [PubMed]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  4. X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
    [Crossref]
  5. A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
    [Crossref]
  6. K. H. Lee, Y. M. Jhon, and W. Y. Choi, “Photonic phase shifters based on a vector-sum technique with polarization-maintaining fibers,” Opt. Lett. 30(7), 702–704 (2005).
    [Crossref] [PubMed]
  7. D. B. Adams and C. K. Madsen, “A novel broadband photonic RF phase shifter,” J. Lightwave Technol. 26(15), 2712–2717 (2008).
    [Crossref]
  8. X. Wang, E. H. W. Chan, and R. A. Minasian, “All-optical photonic microwave phase shifter based on an optical filter with a nonlinear phase response,” J. Lightwave Technol. 31(20), 3323–3330 (2013).
    [Crossref]
  9. J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
    [Crossref] [PubMed]
  10. H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
    [Crossref] [PubMed]
  11. S. Pan and Y. Zhang, “Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer,” Opt. Lett. 37(21), 4483–4485 (2012).
    [Crossref] [PubMed]
  12. W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
    [Crossref] [PubMed]
  13. M. Burla, L. Romero Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, “On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit,” Opt. Lett. 39(21), 6181–6184 (2014).
    [Crossref] [PubMed]
  14. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [Crossref] [PubMed]
  15. M. Pagani, D. Marpaung, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22(23), 28810–28818 (2014).
    [Crossref] [PubMed]
  16. X. Liu, C. Sun, B. Xiong, J. Wang, L. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. B. Wei, Y. Zhang, and J. Wang, “Broadband tunable microwave photonic phase shifter with low RF power variation in a high-Q AlN microring,” Opt. Lett. 41(15), 3599–3602 (2016).
    [Crossref] [PubMed]
  17. Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
    [Crossref]
  18. J. Hervás, I. Suárez, J. Pérez, P. J. R. Cantó, R. Abargues, J. P. Martínez-Pastor, S. Sales, and J. Capmany, “MWP phase shifters integrated in PbS-SU8 waveguides,” Opt. Express 23(11), 14351–14359 (2015).
    [Crossref] [PubMed]
  19. J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
    [Crossref] [PubMed]
  20. M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
    [Crossref] [PubMed]
  21. N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators,” Opt. Commun. 373, 53–58 (2016).
    [Crossref]
  22. J. Tang, M. Li, S. Sun, Z. Li, W. Li, and N. Zhu, “Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations,” Opt. Lett. 41(20), 4609–4612 (2016).
    [Crossref] [PubMed]
  23. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  24. A. Rahim, E. Ryckeboer, A. Z. Subramanian, S. Clemmen, B. Kuyken, A. Dhakal, A. Raza, A. Hermans, M. Muneeb, S. Dhoore, Y. Li, U. Dave, P. Bienstman, N. Le Thomas, G. Roelkens, D. Van Thourhout, P. Helin, S. Severi, X. Rottenberg, and R. Baets, “Expanding the silicon photonics portfolio with silicon nitride photonic integrated circuits,” J. Lightwave Technol. 35(4), 639–649 (2017).
    [Crossref]
  25. M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
    [Crossref] [PubMed]
  26. P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
    [Crossref]
  27. T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
    [Crossref]

2018 (1)

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

2017 (2)

2016 (3)

2015 (1)

2014 (4)

2013 (3)

2012 (3)

2011 (2)

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

2010 (2)

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

2009 (2)

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (1)

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (1)

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

2005 (1)

Abargues, R.

Adams, D. B.

Azaña, J.

Baets, R.

Bienstman, P.

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Boller, K. J.

Bowers, J. E.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

Burla, M.

Cantó, P. J. R.

Capmany, J.

Chan, E. H. W.

Chang, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Choi, D. Y.

Choi, W. Y.

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Clemmen, S.

Dave, U.

Davenport, M. L.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Dhakal, A.

Dhoore, S.

Ding, Y.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Domenech, D.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eggleton, B. J.

Ehteshami, N.

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators,” Opt. Commun. 373, 53–58 (2016).
[Crossref]

Frandsen, L. H.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Gasulla, I.

Han, Y.

Hao, Z.

Heideman, R. G.

Helin, P.

Hermans, A.

Hervás, J.

Huang, D.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

Huang, T. X. H.

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Hvam, J. M.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Jhon, Y. M.

Komljenovic, T.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kuyken, B.

Lahoz, F. J.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Le Thomas, N.

Lee, K. H.

Leinse, A.

Li, H.

Li, M.

Li, Q.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Li, W.

Li, Y.

Li, Z.

Liu, J. G.

Liu, L.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Liu, X.

Lloret, J.

Loayssa, A.

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Luo, Y.

Luther-Davies, B.

Madden, S. J.

Madsen, C. K.

Marpaung, D.

Marpaung, D. A.

Martínez-Pastor, J. P.

Minasian, R. A.

Mizumoto, T.

Muneeb, M.

Muñoz, P.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Oldenbeuving, R. M.

Ou, H.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

Pagani, M.

Pan, S.

Pérez, J.

Pintus, P.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

P. Pintus, D. Huang, C. Zhang, Y. Shoji, T. Mizumoto, and J. E. Bowers, “Microring-based optical isolator and circulator with integrated electromagnet for silicon photonics,” J. Lightwave Technol. 35(8), 1429–1437 (2017).
[Crossref]

Pu, M.

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

Qiu, M.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Rahim, A.

Raza, A.

Roelkens, G.

Roeloffzen, C. G. H.

Romero Cortés, L.

Rottenberg, X.

Ryckeboer, E.

Sales, S.

Sancho, J.

Severi, S.

Shahoei, H.

Shoji, Y.

Su, Y.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Suárez, I.

Subramanian, A. Z.

Sun, C.

Sun, S.

Sun, W. H.

Taddei, C.

Tang, J.

Tran, M. A.

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

van Dijk, P. W. L.

Van Thourhout, D.

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Wang, J.

Wang, L.

Wang, L. X.

Wang, W. T.

Wang, X.

Wei, T. B.

Xiong, B.

Xue, W.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Yan, J.

Yao, J.

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators,” Opt. Commun. 373, 53–58 (2016).
[Crossref]

H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
[Crossref] [PubMed]

J. Yao, “Microwave Photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

Ye, T.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Yi, X.

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

Yvind, K.

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

Zhang, C.

Zhang, W.

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators,” Opt. Commun. 373, 53–58 (2016).
[Crossref]

Zhang, Y.

Zhang, Z.

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

Zhu, N.

Zhu, N. H.

Zhuang, L.

IEEE Photonics Technol. Lett. (4)

X. Yi, T. X. H. Huang, and R. A. Minasian, “Photonic beamforming based on programmable phase shifters with amplitude and phase control,” IEEE Photonics Technol. Lett. 23(18), 1286–1288 (2011).
[Crossref]

A. Loayssa and F. J. Lahoz, “Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation,” IEEE Photonics Technol. Lett. 18(1), 208–210 (2006).
[Crossref]

Q. Chang, Q. Li, Z. Zhang, M. Qiu, T. Ye, and Y. Su, “A tunable broadband photonic RF phase shifter based on a silicon microring resonator,” IEEE Photonics Technol. Lett. 21(1), 60–62 (2009).
[Crossref]

M. Pu, L. Liu, W. Xue, Y. Ding, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Tunable microwave phase shifter based on silicon-on-insulator microring resonator,” IEEE Photonics Technol. Lett. 22(12), 869–871 (2010).
[Crossref] [PubMed]

J. Lightwave Technol. (5)

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Commun. (1)

N. Ehteshami, W. Zhang, and J. Yao, “Optically tunable full 360° microwave photonic phase shifter using three cascaded silicon-on-insulator microring resonators,” Opt. Commun. 373, 53–58 (2016).
[Crossref]

Opt. Express (9)

W. Li, W. H. Sun, W. T. Wang, L. X. Wang, J. G. Liu, and N. H. Zhu, “Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter,” Opt. Express 22(5), 5522–5527 (2014).
[Crossref] [PubMed]

J. Capmany, D. Domenech, and P. Muñoz, “Silicon graphene waveguide tunable broadband microwave photonics phase shifter,” Opt. Express 22(7), 8094–8100 (2014).
[Crossref] [PubMed]

M. Pu, L. Liu, W. Xue, Y. Ding, H. Ou, K. Yvind, and J. M. Hvam, “Widely tunable microwave phase shifter based on silicon-on-insulator dual-microring resonator,” Opt. Express 18(6), 6172–6182 (2010).
[Crossref] [PubMed]

J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, “Fully tunable 360° microwave photonic phase shifter based on a single semiconductor optical amplifier,” Opt. Express 19(18), 17421–17426 (2011).
[Crossref] [PubMed]

H. Shahoei and J. Yao, “Tunable microwave photonic phase shifter based on slow and fast light effects in a tilted fiber Bragg grating,” Opt. Express 20(13), 14009–14014 (2012).
[Crossref] [PubMed]

R. A. Minasian, E. H. W. Chan, and X. Yi, “Microwave photonic signal processing,” Opt. Express 21(19), 22918–22936 (2013).
[Crossref] [PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. Marpaung, M. Burla, and K. J. Boller, “Silicon nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[Crossref] [PubMed]

M. Pagani, D. Marpaung, D. Y. Choi, S. J. Madden, B. Luther-Davies, and B. J. Eggleton, “Tunable wideband microwave photonic phase shifter using on-chip stimulated Brillouin scattering,” Opt. Express 22(23), 28810–28818 (2014).
[Crossref] [PubMed]

J. Hervás, I. Suárez, J. Pérez, P. J. R. Cantó, R. Abargues, J. P. Martínez-Pastor, S. Sales, and J. Capmany, “MWP phase shifters integrated in PbS-SU8 waveguides,” Opt. Express 23(11), 14351–14359 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. IEEE (1)

T. Komljenovic, D. Huang, P. Pintus, M. A. Tran, M. L. Davenport, and J. E. Bowers, “Photonic integrated circuits using heterogeneous integration on silicon,” Proc. IEEE 106(12), 2246–2257 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the MWP phase shifter based on single microring reflector with tunable MZI coupler showing the phase doubling effect and amplitude compensation range denoted by Δ|H(ω)|.
Fig. 2
Fig. 2 Comparison between the simulated RF phase shifting range at different RF frequencies using conventional single all-pass microring resonator and the proposed TMZI-RR.
Fig. 3
Fig. 3 Simulated optical power variations for different combinations of coupling parameters kc1 and kc2. (a) Maximum range of optical power variations (b) Maximum optical signal attenuation.
Fig. 4
Fig. 4 RF power variations at different RF phase shifts under different refractive index variations Δneff.
Fig. 5
Fig. 5 SEM images and measured optical responses of the fabricated TMZI-RR devices (a)-(b) Passive only device (c)-(d) Active device with microheaters.
Fig. 6
Fig. 6 MWP phase shifter operation based on passive only device. (a) RF phase shifts (b) RF power variations.
Fig. 7
Fig. 7 MWP phase shifter operation based on active device. (a) RF phase shifts (b) RF power variations.
Fig. 8
Fig. 8 MWP phase shifter operation based on active device. (a) RF power variations (b) RF phase shifts.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A = r a e j φ 1 r a e j φ
H t f r r = j 2 A 2 e j φ c [ r c 2 k c 2 ( r c 1 2 e j 2 φ 2 k c 1 2 e j 2 φ 1 ) + r c 1 k c 1 e j ( φ 1 + φ 2 ) ( r c 2 2 k c 2 2 ) ]
i R F ( t ) | H ( ω c ) | | H ( ω R F ) | cos [ ω R F t + ( θ c θ R F ) ]
Δ ϕ = 2 π λ Δ n e f f L 2 π λ ( d n s i d T ) Δ T L

Metrics