V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref]
[PubMed]
E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref]
[PubMed]
K. Beha, D. C. Cole, P. Del Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]
I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]
D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielsk, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]
[PubMed]
V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]
J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]
[PubMed]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]
G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
G. Agrawal, Applications of Nonlinear Fiber
Optics (Academic, Inc., 2008).
X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]
[PubMed]
V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]
[PubMed]
E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref]
[PubMed]
V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]
[PubMed]
R. Paschotta, article on “gain saturation” in the Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]
V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]
[PubMed]
E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref]
[PubMed]
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref]
[PubMed]
E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref]
[PubMed]
V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]
V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]
V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]
V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref]
[PubMed]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref]
[PubMed]
H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]
H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref]
[PubMed]
G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).
F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]
V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]
H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref]
[PubMed]
G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]
T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]
I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]
V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]
J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref]
[PubMed]
J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref]
[PubMed]
J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref]
[PubMed]
H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref]
[PubMed]
V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref]
[PubMed]
D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielsk, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
[Crossref]
[PubMed]
V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]
X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
[Crossref]
[PubMed]
H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]
K. Beha, D. C. Cole, P. Del Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]
I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]
E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref]
[PubMed]
H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]
I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref]
[PubMed]
J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]
G. Agrawal, Applications of Nonlinear Fiber
Optics (Academic, Inc., 2008).
R. Paschotta, article on “gain saturation” in the Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).