Abstract

Acousto-optic optical frequency combs can easily produce several hundreds of mutually coherent lines from a single laser, by successive frequency shifts in a loop containing an acousto-optic frequency shifter. They combine many advantages for multi-heterodyne interferometry and dual-comb spectroscopy. In this paper, we propose a model for an intuitive understanding of the performance of acousto-optic optical frequency combs in the steady state. Though relatively simple, the model qualitatively predicts the effect of various experimental parameters on the spectral characteristics of the comb and highlights the primordial role played by the saturation of the gain medium in the loop. The results are validated experimentally, offering a new insight in the performance and optimization of acousto-optic frequency combs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs

Vicente Durán, Cȏme Schnébelin, and Hugues Guillet de Chatellus
Opt. Express 26(11) 13800-13809 (2018)

Arbitrary energy-preserving control of the line spacing of an optical frequency comb over six orders of magnitude through self-imaging

Hugues Guillet de Chatellus, Luis Romero Cortés, and José Azaña
Opt. Express 26(16) 21069-21085 (2018)

Bidirectional frequency-shifting loop for dual-comb spectroscopy

Vicente Duran, Leo Djevarhidjian, and Hugues Guillet de Chatellus
Opt. Lett. 44(15) 3789-3792 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
    [Crossref]
  2. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
    [Crossref]
  3. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielsk, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39, 2688–2690 (2014).
    [Crossref] [PubMed]
  4. V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
    [Crossref]
  5. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  6. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
    [Crossref]
  7. K. Beha, D. C. Cole, P. Del Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
    [Crossref]
  8. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
    [Crossref]
  9. V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
    [Crossref]
  10. J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
    [Crossref] [PubMed]
  11. F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
    [Crossref]
  12. H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
    [Crossref]
  13. J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
    [Crossref] [PubMed]
  14. J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
    [Crossref] [PubMed]
  15. H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
    [Crossref] [PubMed]
  16. V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
    [Crossref] [PubMed]
  17. H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
    [Crossref] [PubMed]
  18. H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
    [Crossref] [PubMed]
  19. H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
    [Crossref]
  20. H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
    [Crossref]
  21. G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).
  22. G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Inc., 2008).
  23. R. Paschotta, article on “gain saturation” in the Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).
  24. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
    [Crossref]
  25. E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
    [Crossref] [PubMed]
  26. J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
    [Crossref]
  27. X. Yan, X. Zou, W. Pan, L. Yan, and J. Azaña, “Fully digital programmable optical frequency comb generation and application,” Opt. Lett. 43, 283–286 (2018).
    [Crossref] [PubMed]

2018 (4)

2017 (2)

E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref] [PubMed]

K. Beha, D. C. Cole, P. Del Haye, A. Coillet, S. A. Diddams, and S. B. Papp, “Electronic synthesis of light,” Optica 4, 406–411 (2017).
[Crossref]

2016 (5)

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Optical real-time Fourier transformation with kHz resolutions,” Optica 3, 1–5 (2016).
[Crossref]

2015 (1)

2014 (4)

2013 (3)

2011 (1)

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]

2010 (1)

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

2008 (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]

G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).

Acedo, P.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Agrawal, G.

G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Inc., 2008).

Ahmad Niazi, S.

Andrekson, P. A.

Azaña, J.

Beha, K.

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Bielsk, K.

Burla, M.

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref] [PubMed]

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414–426 (2016).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Coillet, A.

Cole, D. C.

Del Haye, P.

Diddams, S. A.

Douglass, K. O.

Duran, V.

Durán, V.

Fleisher, A. J.

Garcia-Souto, J. A.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Glastre, W.

Guillet de Chatellus, H.

Hänsch, T. W.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]

Hodges, J. T.

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]

Hovannysyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Hugon, O.

Jacquin, O.

Kweon, G.

G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).

Lacot, E.

Li, G.

Li, J.

Li, X.

Li, Z.

Lin, J.

Long, D. A.

Lu, C.

Marklof, J.

Maxwell, S. E.

Meng, W.

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

Newbury, N.

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Pan, W.

Papp, S. B.

Paschotta, R.

R. Paschotta, article on “gain saturation” in the Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).

Picqué, N.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Plusquellic, D. F.

Poiana, D. A.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Posada-Roman, J. E.

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Romero Cortés, L.

Schnébelin, C.

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref] [PubMed]

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref] [PubMed]

Swann, W.

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Tainta, S.

Teleanu, E. L

E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref] [PubMed]

Tian, F.

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref] [PubMed]

Torres-Company, V.

E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref] [PubMed]

V. Duran, P. A. Andrekson, and V. Torres-Company, “Electro-optic dual-comb interferometry over 40 nm bandwidth,” Opt. Lett. 41, 4190–4193 (2016).
[Crossref]

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Tu, H.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Xi, L.

Yan, L.

Yan, M.

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Yan, X.

Zhang, X.

J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref] [PubMed]

J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref] [PubMed]

J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref] [PubMed]

J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref] [PubMed]

H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]

H. Tu, L. Xi, X. Zhang, X. Zhang, J. Lin, and W. Meng, “Analysis of the performance of optical frequency comb based on recirculating frequency shifter influenced by an Er-doped fiber amplifier,” Photon. Res. 1, 88–91 (2013).
[Crossref]

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref] [PubMed]

Zou, X.

J. Korean Phys. Soc. (1)

G. Kweon, “Noise figure of optical amplifiers,” J. Korean Phys. Soc. 41, 617–628 (2002).

J. Light. Technol. (1)

F. Tian, X. Zhang, J. Li, and L. Xi, “Generation of 50 stable frequency-locked optical carriers for tb/s multicarrier optical transmission using a recirculating frequency shifter,” J. Light. Technol. 29, 1085–1091 (2011).
[Crossref]

Laser Photonics Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8, 368–393 (2014).
[Crossref]

Nat. Commun. (1)

H. Guillet de Chatellus, L. Romero Cortés, C. Schnébelin, M. Burla, and J. Azaña, “Reconfigurable photonic generation of broadband chirped waveforms using a single CW laser and low-frequency electronics,” Nat. Commun. 9, 2438 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2016).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 232–237 (2002).
[Crossref]

Nature Photon. (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nature Photon. 3, 351–356 (2009).
[Crossref]

Opt. Express (7)

V. Durán, S. Tainta, and V. Torres-Company, “Ultrafast electro-optic dual-comb interferometry,” Opt. Express 23, 30557–30569 (2015).
[Crossref]

J. Li, X. Li, X. Zhang, F. Tian, and L. Xi, “Analysis of the stability and optimizing operation of the single-side-band modulator based on recirculating frequency shifter used for the T-bit/s optical communication transmission,” Opt. Express 18, 17597–17609 (2010).
[Crossref] [PubMed]

J. Li, X. Zhang, Z. Li, X. Zhang, G. Li, and C. Lu, “Theoretical studies on the polarizationmodulator-based single-side-band modulator used for generation of optical multicarrier,” Opt. Express 22, 14087–14095 (2014).
[Crossref] [PubMed]

J. Lin, L. Xi, J. Li, X. Zhang, X. Zhang, and S. Ahmad Niazi, “Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop,” Opt. Express 22, 7852–7864 (2014).
[Crossref] [PubMed]

H. Guillet de Chatellus, O. Jacquin, O. Hugon, W. Glastre, E. Lacot, and J. Marklof, “Generation of ultrahigh and tunable repetition rates in CW injection-seeded frequency-shifted feedback lasers,” Opt. Express 21, 15065–15074 (2013).
[Crossref] [PubMed]

V. Durán, C. Schnébelin, and H. Guillet de Chatellus, “Coherent multi-heterodyne spectroscopy using acousto-optic frequency combs,” Opt. Express 26, 13800–13809 (2018).
[Crossref] [PubMed]

H. Guillet de Chatellus, L. Romero Cortés, and J. Azaña, “Arbitrary energy-preserving control of the free spectral range of an optical frequency comb over six orders of magnitude through self-imaging,” Opt. Express 26, 21069–21085 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (3)

Optics Express (1)

E. L Teleanu, V. Durán, and V. Torres-Company, “Electro-optic dual-comb interferometer for high-speed vibrometry,” Optics Express 25, 16427–16436 (2017).
[Crossref] [PubMed]

Photon. Res. (1)

Phys. Rev. A (1)

H. Guillet de Chatellus, E. Lacot, W. Glastre, O. Jacquin, and O. Hugon, “Theory of Talbot lasers,” Phys. Rev. A 88, 033828 (2013).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Sensors (1)

J. E. Posada-Roman, J. A. Garcia-Souto, D. A. Poiana, and P. Acedo, “Fast interrogation of fiber Bragg gratings with electro-optical dual optical frequency combs,” Sensors 16, 2007 (2016).
[Crossref]

Other (2)

G. Agrawal, Applications of Nonlinear Fiber Optics (Academic, Inc., 2008).

R. Paschotta, article on “gain saturation” in the Encyclopedia of Laser Physics and Technology, 1st ed. (Wiley-VCH, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Sketch of an AO-FSL. The loop (travel time: τc) contains an amplifier (EDFA), an AOFS (driven at fs), and a tunable bandpass filter (TBPF). Heterodyning the output of the FSL with the seed laser and performing a numerical Fourier transform enables one to record the AO-OFC. All power values considered in the model (sn and an) are taken at the location of the arrow, i.e., between the input, and the output coupler. (b) Spectrum at the output of the FSL. The width of the flat-top TBPF (in green) is equal to Nfs. The power of the line labelled by n is denoted by sn. an is the ASE power in a frequency band of bandwidth fs, centered around fn = f0 + nfs.
Fig. 2
Fig. 2 Influence of (a) the filter bandwidth (number of comb lines) and (b) the FSR on the comb (solid lines) and on the ASE spectrum (dashed lines). Unless specified in the plots, the default parameters have the following values: λ0 = c / f0 = 1.55 μm (wavelength of the seed laser), N = 500, s0 = 1 μW, Gss = 100, Psat = 300 μW, T = 0.1, fs = 80 MHz, and NF = 5.5 dB.
Fig. 3
Fig. 3 Role of characteristic parameters of the amplifier on the comb and ASE: (a) noise figure of the amplifier, and (b) small signal amplification factor.
Fig. 4
Fig. 4 Influence of (a) the transmission coefficient of the FSL and (b) the injection power on the comb and ASE spectrum.
Fig. 5
Fig. 5 (a) Variation of the comb slope with the transmission coefficient (T) for the following parameters: N = 500, s0 = 1 μw, Gss = 20, Psat = 30 μW, fs = 80 MHz, and NF = 5.5 dB. (b) Variation of the comb slope with the seed power s0 (N = 500, Gss = 100, Psat = 700 μW, T = 0.1, fs = 80 MHz, and NF = 5.5 dB).
Fig. 6
Fig. 6 Representative example of heterodyne measurement of an AO-OFC for fs = 50 kHz. More than 800 lines are generated in the FSL. The ripples in the left inset are due to numerical artefacts of the digital sampling oscilloscope.
Fig. 7
Fig. 7 Slope of the comb envelope measured in different experimental conditions, as a function of the product G × T. The red curve is the function: slope = 10 log(G × T).
Fig. 8
Fig. 8 (a) Influence of the transmission coefficient of the FSL (T, in dB) on the AO-OFC. (b) Influence of injection power.
Fig. 9
Fig. 9 Experimental variation of the comb slope with (a) the transmission coefficient, and (b) the seed power.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

s n = ( G × T ) n s 0 .
a n = G × T × a n 1 + a 0 ,
a n = Σ k = 0 n ( G T ) k a 0 = 1 ( G T ) n + 1 1 G T a 0 .
G = exp ( g s s 1 + P tot P sat ) ,
slope = 10 log ( s n + 1 / s n ) ,
FoM = s 0 ( N + 1 ) n sp h f 0 ( 1 / T 1 ) f s T s 0 n sp h f 0 N f s .

Metrics