Abstract

Quantum spectroscopy with undetected photons (QSUP) utilizing the quantum entanglement of parametrically down-converted photons has emerged as a new spectroscopic platform. Here, we demonstrate a high-resolution and remote-measurement QSUP, where light-matter interactions and photon detections are performed in spectrally and spatially different regions. A dual-stimulated parametric down-conversion scheme with an optical frequency-comb pump and ultra-narrow coherent seed beam in an idler mode is used to generate path-entangled pairs of the undetected idler and measured frequency-comb signal photons. To demonstrate the frequency resolution of this scheme, a Fabry-Pérot cavity with a narrow bandwidth is used as a sample that modulates the distinguishability of one-photon-added coherent idler beams, which directly affects the interference fringe visibility of the entangled signal photons. We thus anticipate that the remote QSUP whose frequency resolution is determined by the linewidth of the coherent seed laser will enable the development of quantum spectroscopy featuring high resolution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Narrowband photon pairs with independent frequency tuning for quantum light-matter interactions

Vindhiya Prakash, Lorena C. Bianchet, Marc T. Cuairan, Pau Gomez, Natalia Bruno, and Morgan W. Mitchell
Opt. Express 27(26) 38463-38478 (2019)

Coherence and entanglement preservation of frequency-converted heralded single photons

Andreas Lenhard, José Brito, Matthias Bock, Christoph Becher, and Jürgen Eschner
Opt. Express 25(10) 11187-11199 (2017)

Transfer of temporal coherence in parametric down-conversion

Girish Kulkarni, Prashant Kumar, and Anand K. Jha
J. Opt. Soc. Am. B 34(8) 1637-1643 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
    [Crossref] [PubMed]
  2. G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
    [Crossref]
  3. K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
    [Crossref]
  4. A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69(1), 013806 (2004).
    [Crossref]
  5. S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
    [Crossref]
  6. G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
    [Crossref]
  7. M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
    [Crossref]
  8. M. Chekhova and Z. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–155 (2016).
    [Crossref]
  9. D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
    [Crossref]
  10. R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
    [Crossref]
  11. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
    [Crossref] [PubMed]
  12. F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
    [Crossref] [PubMed]
  13. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
    [Crossref] [PubMed]
  14. M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
    [Crossref]
  15. X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
    [Crossref] [PubMed]
  16. L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
    [Crossref] [PubMed]
  17. X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
    [Crossref] [PubMed]
  18. G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
    [Crossref] [PubMed]
  19. M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
    [Crossref]
  20. D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
    [Crossref]
  21. A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
    [Crossref]
  22. A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
    [Crossref]
  23. A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
    [Crossref] [PubMed]
  24. S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
    [Crossref] [PubMed]
  25. M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
    [Crossref]
  26. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [Crossref]
  27. C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A Gen. Phys. 31(4), 2409–2418 (1985).
    [Crossref] [PubMed]
  28. T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
    [Crossref] [PubMed]
  29. L. Mandel, “Coherence and indistinguishability,” Opt. Lett. 16(23), 1882–1883 (1991).
    [Crossref] [PubMed]
  30. M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
    [Crossref]
  31. C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
    [Crossref]
  32. S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
    [Crossref]
  33. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
    [Crossref]
  34. A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
    [Crossref] [PubMed]
  35. Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
    [Crossref] [PubMed]
  36. L. Wang, X. Zou, and L. Mandel, “Observation of induced coherence in two-photon downconversion,” J. Opt. Soc. Am. B 8(5), 978–980 (1991).
    [Crossref]
  37. S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
    [Crossref]
  38. A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
    [Crossref]
  39. M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
    [Crossref]
  40. T. W. Neely, L. Nugent-Glandorf, F. Adler, and S. A. Diddams, “Broadband mid-infrared frequency upconversion and spectroscopy with an aperiodically poled LiNbO3 waveguide,” Opt. Lett. 37(20), 4332–4334 (2012).
    [Crossref] [PubMed]
  41. T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb: fiber femtosecond laser,” Appl. Phys. B 107(1), 31–39 (2012).
    [Crossref]

2018 (4)

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

2017 (6)

S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
[Crossref] [PubMed]

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
[Crossref]

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

2016 (5)

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
[Crossref]

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

M. Chekhova and Z. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–155 (2016).
[Crossref]

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

2015 (4)

R. S. Aspden, N. R. Gemmell, P. A. Morris, D. S. Tasca, L. Mertens, M. G. Tanner, R. A. Kirkwood, A. Ruggeri, A. Tosi, R. W. Boyd, G. S. Buller, R. H. Hadfield, and M. J. Padgett, “Photon-sparse microscopy: visible light imaging using infrared illumination,” Optica 2(12), 1049–1052 (2015).
[Crossref]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
[Crossref] [PubMed]

A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
[Crossref]

2014 (3)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

2013 (1)

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

2012 (2)

2010 (2)

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

2004 (2)

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69(1), 013806 (2004).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref] [PubMed]

2003 (1)

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

2000 (1)

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

1994 (1)

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

1992 (1)

X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
[Crossref] [PubMed]

1991 (4)

X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
[Crossref] [PubMed]

L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
[Crossref] [PubMed]

L. Mandel, “Coherence and indistinguishability,” Opt. Lett. 16(23), 1882–1883 (1991).
[Crossref] [PubMed]

L. Wang, X. Zou, and L. Mandel, “Observation of induced coherence in two-photon downconversion,” J. Opt. Soc. Am. B 8(5), 978–980 (1991).
[Crossref]

1990 (1)

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

1985 (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A Gen. Phys. 31(4), 2409–2418 (1985).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Abrams, D. S.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Adler, F.

Alipour, S.

S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
[Crossref]

Altuzarra, C.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

An, C.

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

Armstrong, S. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Aspden, R. S.

Berchera, I. R.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Borish, V.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

Boto, A. N.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Bowen, W. P.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Boyd, R. W.

Braunstein, S. L.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Brida, G.

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Buller, G. S.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Chekhova, M.

M. Chekhova and Z. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–155 (2016).
[Crossref]

Cho, M.

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
[Crossref] [PubMed]

Cole, G. D.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

Couteau, C.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Diddams, S. A.

Dorfman, K. E.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
[Crossref]

Dowling, J. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Faccio, D.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Fickler, R.

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

Furusawa, A.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Gao, W.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Gemmell, N. R.

Genovese, M.

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

Giese, E.

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref] [PubMed]

Gompers, S.

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

Grayson, T. P.

X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
[Crossref] [PubMed]

Hadfield, R. H.

Han, N. S.

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

Hermes, M.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Herzog, T. J.

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

Heuer, A.

A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
[Crossref] [PubMed]

A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
[Crossref]

Hochrainer, A.

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A Gen. Phys. 31(4), 2409–2418 (1985).
[Crossref] [PubMed]

Hudelist, F.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Huot, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Jing, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Johnson, T. A.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb: fiber femtosecond laser,” Appl. Phys. B 107(1), 31–39 (2012).
[Crossref]

Junaid, S.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Kaji, T.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Kalashnikov, D.

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

Kalashnikov, D. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

Kirkwood, R. A.

Kobayashi, T.

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69(1), 013806 (2004).
[Crossref]

Kok, P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Kolobov, M. I.

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

Kong, J.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Krenn, M.

S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
[Crossref]

Krivitsky, L.

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

Krivitsky, L. A.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

Kulik, S. P.

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Kuznetsov, A. I.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

Lahiri, M.

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

Lapkiewicz, R.

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

Lee, S. K.

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
[Crossref] [PubMed]

Lemieux, S.

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

Lemos, G. B.

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

Liu, C.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Lloyd, G.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref] [PubMed]

Mandel, L.

X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
[Crossref] [PubMed]

X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
[Crossref] [PubMed]

L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
[Crossref] [PubMed]

L. Mandel, “Coherence and indistinguishability,” Opt. Lett. 16(23), 1882–1883 (1991).
[Crossref] [PubMed]

L. Wang, X. Zou, and L. Mandel, “Observation of induced coherence in two-photon downconversion,” J. Opt. Soc. Am. B 8(5), 978–980 (1991).
[Crossref]

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A Gen. Phys. 31(4), 2409–2418 (1985).
[Crossref] [PubMed]

Masselink, W.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Meng, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Menicucci, N. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Menzel, R.

A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
[Crossref] [PubMed]

A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
[Crossref]

Mertens, L.

Milonni, P.

A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
[Crossref]

Milonni, P. W.

A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
[Crossref] [PubMed]

Monken, C.

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

Morris, P. A.

Morrish, R. B.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Mukamel, S.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
[Crossref]

Neely, T. W.

Nugent-Glandorf, L.

Ou, Z.

M. Chekhova and Z. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–155 (2016).
[Crossref]

Ou, Z. Y.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

Padgett, M. J.

Pádua, S.

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

Palombo, F.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Pan, Z.

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

Paterova, A.

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

Paterova, A. V.

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

Pedersen, C.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Ramelow, S.

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

Rarity, J. G.

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

Ribeiro, P. S.

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

Ruggeri, A.

Scarcelli, G.

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

Schlawin, F.

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
[Crossref]

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Shih, Y.

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

Shih, Y. H.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Soci, C.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Sornphiphatphong, C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Stone, N.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Suzuki, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Tanner, M. G.

Tasca, D. S.

Taylor, M. A.

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

Tidemand-Lichtenberg, P.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Tomko, J.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

Tosi, A.

Ukai, R.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Valencia, A.

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

Valente, J.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Vezzoli, S.

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Walborn, S. P.

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

Wang, L.

Wang, L. J.

L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
[Crossref] [PubMed]

X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
[Crossref] [PubMed]

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

Weinfurter, H.

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

Williams, C. P.

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Yabushita, A.

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69(1), 013806 (2004).
[Crossref]

Yang, H.

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

Yokoyama, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Yonezawa, H.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Yoon, T. H.

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
[Crossref] [PubMed]

Yoshikawa, J.-i.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Zeilinger, A.

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
[Crossref]

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

Zhang, W.

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Zou, X.

Zou, X. Y.

X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
[Crossref] [PubMed]

L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
[Crossref] [PubMed]

X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
[Crossref] [PubMed]

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

ACS Photonics (1)

C. Altuzarra, S. Vezzoli, J. Valente, W. Gao, C. Soci, D. Faccio, and C. Couteau, “Coherent perfect absorption in metamaterials with entangled photons,” ACS Photonics 4(9), 2124–2128 (2017).
[Crossref]

Adv. Opt. Photonics (1)

M. Chekhova and Z. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–155 (2016).
[Crossref]

Appl. Phys. B (1)

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a Yb: fiber femtosecond laser,” Appl. Phys. B 107(1), 31–39 (2012).
[Crossref]

Appl. Phys. Lett. (1)

G. Scarcelli, A. Valencia, S. Gompers, and Y. Shih, “Remote spectral measurement using entangled photons,” Appl. Phys. Lett. 83(26), 5560–5562 (2003).
[Crossref]

Commun. Phys. (1)

S. K. Lee, N. S. Han, T. H. Yoon, and M. Cho, “Frequency comb single-photon interferometry,” Commun. Phys. 1(1), 51 (2018).
[Crossref]

J. Opt. (3)

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. Lloyd, W. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20(2), 023002 (2018).
[Crossref]

M. Genovese, “Real applications of quantum imaging,” J. Opt. 18(7), 073002 (2016).
[Crossref]

M. I. Kolobov, E. Giese, S. Lemieux, R. Fickler, and R. W. Boyd, “Controlling induced coherence for quantum imaging,” J. Opt. 19(5), 054003 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, and W. Zhang, “Quantum metrology with parametric amplifier-based photon correlation interferometers,” Nat. Commun. 5(1), 3049 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, “Infrared spectroscopy with visible light,” Nat. Photonics 10(2), 98–101 (2016).
[Crossref]

G. Brida, M. Genovese, and I. R. Berchera, “Experimental realization of sub-shot-noise quantum imaging,” Nat. Photonics 4(4), 227–230 (2010).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N. C. Menicucci, and A. Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7(12), 982–986 (2013).
[Crossref]

Nature (1)

G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, “Quantum imaging with undetected photons,” Nature 512(7515), 409–412 (2014).
[Crossref] [PubMed]

New J. Phys. (1)

A. Paterova, H. Yang, C. An, D. Kalashnikov, and L. Krivitsky, “Measurement of infrared optical constants with visible photons,” New J. Phys. 20(4), 043015 (2018).
[Crossref]

Opt. Lett. (2)

Optica (1)

Phys. Rep. (2)

M. A. Taylor and W. P. Bowen, “Quantum metrology and its application in biology,” Phys. Rep. 615, 1–59 (2016).
[Crossref]

S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep. 495(4-5), 87–139 (2010).
[Crossref]

Phys. Rev. A (6)

A. Yabushita and T. Kobayashi, “Spectroscopy by frequency-entangled photon pairs,” Phys. Rev. A 69(1), 013806 (2004).
[Crossref]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52(5), R3429–R3432 (1995).
[Crossref] [PubMed]

Z. Y. Ou, L. J. Wang, X. Y. Zou, and L. Mandel, “Coherence in two-photon down-conversion induced by a laser,” Phys. Rev. A 41(3), 1597–1601 (1990).
[Crossref] [PubMed]

M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Theory of quantum imaging with undetected photons,” Phys. Rev. A 92(1), 013832 (2015).
[Crossref]

L. J. Wang, X. Y. Zou, and L. Mandel, “Induced coherence without induced emission,” Phys. Rev. A 44(7), 4614–4622 (1991).
[Crossref] [PubMed]

A. Heuer, R. Menzel, and P. Milonni, “Complementarity in biphoton generation with stimulated or induced coherence,” Phys. Rev. A 92(3), 033834 (2015).
[Crossref]

Phys. Rev. A (Coll. Park) (2)

M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Partial polarization by quantum distinguishability,” Phys. Rev. A (Coll. Park) 95(3), 033816 (2017).
[Crossref]

S. Alipour, M. Krenn, and A. Zeilinger, “Quantum gate description for induced coherence without induced emission and its applications,” Phys. Rev. A (Coll. Park) 96(4), 042317 (2017).
[Crossref]

Phys. Rev. A Gen. Phys. (1)

C. K. Hong and L. Mandel, “Theory of parametric frequency down conversion of light,” Phys. Rev. A Gen. Phys. 31(4), 2409–2418 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (6)

T. J. Herzog, J. G. Rarity, H. Weinfurter, and A. Zeilinger, “Frustrated two-photon creation via interference,” Phys. Rev. Lett. 72(5), 629–632 (1994).
[Crossref] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[Crossref]

A. Heuer, R. Menzel, and P. W. Milonni, “Induced coherence, vacuum fields, and complementarity in biphoton generation,” Phys. Rev. Lett. 114(5), 053601 (2015).
[Crossref] [PubMed]

X. Y. Zou, T. P. Grayson, and L. Mandel, “Observation of quantum interference effects in the frequency domain,” Phys. Rev. Lett. 69(21), 3041–3044 (1992).
[Crossref] [PubMed]

X. Y. Zou, L. J. Wang, and L. Mandel, “Induced coherence and indistinguishability in optical interference,” Phys. Rev. Lett. 67(3), 318–321 (1991).
[Crossref] [PubMed]

A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85(13), 2733–2736 (2000).
[Crossref] [PubMed]

Phys. Rev. X (1)

D. A. Kalashnikov, Z. Pan, A. I. Kuznetsov, and L. A. Krivitsky, “Quantum spectroscopy of plasmonic nanostructures,” Phys. Rev. X 4(1), 011049 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, “Quantifying the momentum correlation between two light beams by detecting one,” Proc. Natl. Acad. Sci. U.S.A. 114(7), 1508–1511 (2017).
[Crossref] [PubMed]

Quantum Sci. Technol. (1)

A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, “Tunable optical coherence tomography in the infrared range using visible photons,” Quantum Sci. Technol. 3(2), 025008 (2018).
[Crossref]

Rev. Mod. Phys. (1)

K. E. Dorfman, F. Schlawin, and S. Mukamel, “Nonlinear optical signals and spectroscopy with quantum light,” Rev. Mod. Phys. 88(4), 045008 (2016).
[Crossref]

Sci. Rep. (1)

S. K. Lee, T. H. Yoon, and M. Cho, “Quantum optical measurements with undetected photons through vacuum field indistinguishability,” Sci. Rep. 7(1), 6558 (2017).
[Crossref] [PubMed]

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306(5700), 1330–1336 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of QSUP experimental setup. Yb fiber optical frequency-comb laser (λf = 1060 nm) is used for second-harmonic generation (SHG) of optical frequency-comb at λp = 530 nm (a). The SHG field is then split into two paths by a polarizing beam splitter (PBS) to pump the two spatially separate but identical PPLN crystals. The parametric down-conversion processes, PDC1 and PDC2, are stimulated by injected seed beams from a CW laser at 1542 nm with a linewidth of <1 Hz (c). Each StPDC produces a stream of path-entangled pairs of signal and idler photons. In the radiation source module, a 50:50 beam splitter (BS) is used to divide the coherent CW light into two paths. The lower path CW light interacts with an FP cavity whose cavity length is 7.5 mm and free spectral range is 10 GHz (d), which is a model optical sample. In (a), a variable neutral density (VND) filter is used to adjust or attenuate the CW beam intensity at the PDC1 crystal, to enhance the measured visibility. The signal beam is separated from the collinearly propagating idler beam using a dichroic mirror (DM) placed after each periodically poled lithium niobate (PPLN) crystal. Only the signal beams from the two PPLN crystals are combined by a 50:50 BS and the one-photon interference of the band-pass-filtered (BPF) signal field is recorded by spectrometer and EMCCD (b). The phase modulation is introduced by periodically changing the difference in the two pump (530 nm) pathlengths in (a). Here, the FP cavity with a finesse of 135 exhibits a resonant peak with a linewidth of 74 MHz.
Fig. 2
Fig. 2 One-photon interference and FP cavity transmission spectrum. (a), Experimentally measured single photon counting rate of signal field in Fig. 1(b) is plotted with respect to the detuning frequency, which is changed by scanning the FP cavity length with PZT. Here, the voltage applied to the PZT attached to one of the cavity mirrors is also shown. Each scan time is 10 s. By assuming that the frequency was adjusted linearly with the voltage scan time, the frequency was calibrated with a time interval between the two resonant peaks (10 GHz). In a, the coherent CW seed laser frequency is fixed. The pump pathlength difference (Δxp) is modulated by a 0.5 Hz triangle wave between 0 to 6 μm (11 oscillations per second), to obtain interference fringes. The SNR (the ratio of peak amplitude to standard deviation of noise) is about 20. (b) The measured (normalized) transmission (blue square) is plotted with respect to the detuning frequency. In this figure, open black circles are the transmission obtained by directly measuring the transmitted 1540 nm laser with a near-IR photodiode detector. The red solid line in (b) is the fitted Airy function that is known to describe the transmission spectrum of the FP resonator, i.e., |TFP (νFP ,νi )|2 = |T0|2 /{1 + (2F/ π)2 sin2 [δ/2]}(with δ = 2πνi /νFSR, T0 is the characteristic constant depending on each FP cavity, νFSR = c /4L for a confocal cavity, and L the cavity length. The resonant transmission peaks appear at δ = 2πq (q = integer), i.e., νi = νFP = FSR, with a peak width Δν = ν FSR /F and a Finesse F = π R / ( 1 R ) with R being the mirror reflectance of the FP cavity. Two resonant peaks appear in (b) and the linewidth of each peak is estimated to be 74 MHz. The blue squares represent the QSUP results (averages over 5 independent measurements), which are extracted from the signal field interference fringe analyses, where the EMCCD detection window is ± 5 nm around 807 nm. (c) One-photon interference of signal photons is modulated by idler transmission. Here, the FP cavity length (resonance frequency) is fixed, but the CW laser frequency is scanned in the frequency window of ± 150 MHz around the FP cavity resonance frequency with scan time 2 s by applying FM voltage to WGM micro-resonator of the laser. The frequency is calibrated by the full width at half maximum (FWHM) to 74 MHz based on the assumption of a linear relation between the FM voltage scan time and frequency shift. The applied FM voltage scan rate is 10 V/s and the frequency-voltage relationship is 15 MHz/V. The pump pathlength difference (Δxp) is modulated by a 0.5 Hz triangle wave between 0 to 6 μm (11 oscillations per second). (d) The retrieved QSUP spectrum (blue squares) of the FP cavity. The black dots represent transmission data obtained by directly measuring the transmitted idler photon intensity with a near-IR photodiode and the solid red line is a fitted Airy function. The sign of the detuning frequency refers to the opposite sign to the detuning around the resonant frequency.
Fig. 3
Fig. 3 Fringe visibility at the FP cavity resonance frequency versus the intensity ratio of the two seed beams, where the latter is controlled by adjusting the transmissivity of variable neutral density (VND) filter. The intensity of the upper seed beam in Fig. 1(a) is modulated by |TVND|2, whereas that of the lower seed beam by the frequency-dependent |TFP|2. Here, the experimentally measured visibility (blue square) is at the FP cavity resonance frequency and it is plotted with respect to |TVND |2 when the pump intensity ratio I2/I1 is close to unity. The inset in this figure shows the sample plot when I2/I1 = 5.7. The solid red line is a fitted curve with the theoretical equation obtained from quantum mechanical descriptions of the coherent seed beam-cavity interaction and the single-photon interferometry, V = 2 I 2 / I 1 | T V N D T F P | | α 1 α 2 | [ | T V N D | 2 | α 1 | 2 + 1 + ( I 2 / I 1 ) ( | T F P | 2 | α 2 | 2 + 1 ) ] 1 . Here, the experimental parameters, such as the average photon numbers of the seed (in an idler mode) beams at the PDC crystals and the degree of intensity unbalance of the pump beam, are measured independently. The dashed line corresponds to the visibility obtained from a classical mechanical description with the same parameters for the pump beam intensities. The error bars represent the standard deviation estimated from ten consecutive, independent measurements.
Fig. 4
Fig. 4 Schematic diagrams representing conventional spectroscopy, single StPDC QSUP, and our dual StPDC QSUP. (a) The transmission spectrum of the FP cavity can be directly measured with detector D1 at 1524 nm. (b) Single StPDC QSUP can be used to indirectly measure the transmission spectrum, where the quantum entangled signal beam at a center wavelength of 807 nm is measured with detector D2. This is the ordinary frequency conversion setup with one nonlinear crystal (PDC). (c) Our dual StPDC QSUP uses two nonlinear crystals and the one-photon interference of thus generated signal fields is detected with D3 at around 807 nm.
Fig. 5
Fig. 5 Experimentally measured transmission spectra of the FP cavity with the FP cavity length scan. The transmission spectrum of the FP cavity is obtained by tuning the resonance frequency of FP cavity, which is achieved by scanning the cavity length for 10 s. The scan rate is 1.27 GHz/s. The spectrum in the top panel is the transmission intensity (arbitrary unit) of injected seed beam, which is measured with NIR (1542 nm) photodiode (D1) in Fig. 4(a). That in the middle panel shows the frequency converted signal photons modulated by the idler beam transmission, where EMCCD (D2) in Fig. 4(b) is used. The spectrum in the bottom panel is one-photon interference fringe of signal photons modulated by idler beam transmission, which is detected by EMCCD (D3) in Fig. 4(c). To obtain the scan time-dependent signals in the middle and bottom panels, the single photon counting rates are measured for 10 ms (exposure time) and the detection wavelength window is 807.2 nm ± 0.1 nm. In this FP cavity length scanning mode, SNR improvement in our QSUP setup is significant compared to the conventional single path technique using just one nonlinear crystal.
Fig. 6
Fig. 6 Experimentally measured transmission spectra of the FP cavity with a seed beam frequency scan. To measure the transmission spectrum of the FP cavity, we scan the seed laser frequency with a fixed FP cavity length (resonance frequency). The scan time is 2 s and the seed beam frequency scan rate is 150 MHz/s. The spectrum in the top panel corresponds to the transmission intensity (arbitrary unit) of the injected seed beam, where NIR photodiode (D1) in Fig. 4(a) is used. That in the middle panel is single-photon counting rates with respect to the seed beam frequency scan time (or equally seed beam frequency), where the used detector is EMCCD (D2) in Fig. 4(b). The spectrum in the bottom panel corresponds to the one-photon interference fringe of signal photons modulated by the seed beam transmission, where EMCCD (D3) in Fig. 4(c) is the detector. Here, the single photon counting rates are measured for 10 ms (exposure time) and the wavelength window of the EMCCD is 807.2 nm ± 0.05 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| ψ ( t ) | 0 , 0 s 1 s 2 | α , T F P α i 1 i 2 + c 1 ( t ) | 1 , 0 s 1 s 2 a ^ i 1 | α , T F P α i 1 i 2 + c 2 ( t ) | 0 , 1 s 1 s 2 a ^ i 2 | α , T F P α i 1 i 2 ,
R s I 1 ( | α | 2 + 1 ) + I 2 ( | T F P | 2 | α | 2 + 1 ) + 2 I 1 I 2 | α | 2 | T F P | cos ( Δ φ p + φ 0 ) ,
H Q M = i g E p a s + a i + i g * E p * a s a i ,
H C M = i g E p E i a s + i g * E p * E i * a s ,
R s = ψ t ( t ) | ( a s 1 + e i Δ φ t a s 2 ) ( a s 1 + e i Δ φ t a s 2 ) | ψ t ( t ) = | β 1 | 2 + | T F P β 2 | 2 + 2 | β 1 β 2 T F P | cos Δ φ t I 1 | α 1 | 2 + I 2 | T F P α 2 | 2 + 2 I 1 I 2 | α 1 α 2 T F P | cos Δ φ t ,
V C M = 2 I 2 / I 1 | T F P T V N D | | α 1 α 2 | ( | T V N D | 2 | α 1 | 2 + ( I 2 / I 1 ) | T F P | 2 | α 2 | 2 ) 1 .

Metrics