Abstract

A perfect absorber is highly desired in many engineering applications, including cloaking devices and sensor detectors, but most types of absorbers with chirality-dependence have limited bandwidth. In this paper, we propose a novel broadband and chirality-dependent metasurface absorber that consists of an array of planar spiral elements. The spiral orientation can determine the absorption polarization, such as counterclockwise for right circular polarization (RCP) absorption and clockwise for left circular polarization (LCP) absorption. Three steps are adopted to enhance the absorption bandwidth: carefully optimizing the spiral turns, impedance of load resistor, and introducing a matching layer. To demonstrate our concept, we have designed and fabricated a realistic metasurface absorber. The numerical simulations are in good agreement with the experimental results. The simulation and measurement results demonstrate that this device can achieve a broadband (8.3–18 GHz) absorption for RCP incidence, while reflecting the LCP incident waves between 9 GHz to 17.8 GHz without changing its chirality. Our findings explore a novel way to realize broadband absorption and simultaneously provide a new strategy to design chirality-dependent multi-functional meta-devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic spin Hall effect based on broadband high-efficiency reflective metasurfaces

Zhanyi Zhang, Haigang Liang, Tao He, Zhanshan Wang, and Xinbin Cheng
Appl. Opt. 59(5) A63-A68 (2020)

Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves

Yongzhi Cheng, Haoran Chen, Jingcheng Zhao, Xuesong Mao, and Zhengze Cheng
Opt. Mater. Express 8(5) 1399-1409 (2018)

Near-infrared chiral plasmonic metasurface absorbers

Leixin Ouyang, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Jie Gao, and Xiaodong Yang
Opt. Express 26(24) 31484-31489 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. F. Zhang and J. R. Li, “Compact UWB and low-RCS vivaldi antenna using ultrathin microwave-absorbing materials,” IEEE Antennas. Wirel. Propag. Lett. 16, 1965–1968 (2017).
    [Crossref]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  3. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  4. J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
    [Crossref]
  5. E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
    [Crossref]
  6. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
    [Crossref] [PubMed]
  7. K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
    [Crossref] [PubMed]
  8. L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
    [Crossref] [PubMed]
  9. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
    [Crossref]
  10. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  11. H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
    [Crossref]
  12. H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
    [Crossref]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  14. B. X. Wang and G. Z. Wang, “New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency,” Plasmonics 13(1), 123–130 (2018).
    [Crossref]
  15. Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
    [Crossref]
  16. X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  17. D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
    [Crossref] [PubMed]
  18. G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
    [Crossref] [PubMed]
  19. K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
    [Crossref]
  20. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
    [Crossref] [PubMed]
  21. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref] [PubMed]
  22. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  23. Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
    [Crossref]
  24. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  25. H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
    [Crossref] [PubMed]
  26. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [Crossref] [PubMed]
  27. M. Yoo and S. Lim, “Polarization-independent and ultrawide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
    [Crossref]
  28. M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
    [Crossref]
  29. C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
    [Crossref] [PubMed]
  30. E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
    [Crossref] [PubMed]
  31. F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
    [Crossref]
  32. W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
    [Crossref]
  33. L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
    [Crossref]
  34. D. Xiao, Y. J. Liu, S. Yin, J. Liu, W. Ji, B. Wang, D. Luo, G. Li, and X. W. Sun, “Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption,” Opt. Express 26(19), 25305–25314 (2018).
    [Crossref] [PubMed]
  35. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
    [Crossref] [PubMed]
  36. B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
    [Crossref]
  37. Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399 (2018).
    [Crossref]
  38. E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
    [Crossref]
  39. H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
    [Crossref]
  40. B. A. Munk, Finite Antenna Arrays and FSS (John Wiley and Sons, 2003).

2019 (1)

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

2018 (9)

B. X. Wang and G. Z. Wang, “New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency,” Plasmonics 13(1), 123–130 (2018).
[Crossref]

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
[Crossref] [PubMed]

F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

H. Xiong, Y. B. Wu, J. Dong, M. C. Tang, Y. N. Jiang, and X. P. Zeng, “Ultra-thin and broadband tunable metamaterial graphene absorber,” Opt. Express 26(2), 1681–1688 (2018).
[Crossref] [PubMed]

Y. Z. Cheng, H. R. Chen, J. C. Zhao, X. S. Mao, and Z. Z. Cheng, “Chiral metamaterial absorber with high selectivity for terahertz circular polarization waves,” Opt. Mater. Express 8(5), 1399 (2018).
[Crossref]

D. Xiao, Y. J. Liu, S. Yin, J. Liu, W. Ji, B. Wang, D. Luo, G. Li, and X. W. Sun, “Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption,” Opt. Express 26(19), 25305–25314 (2018).
[Crossref] [PubMed]

2017 (11)

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

P. F. Zhang and J. R. Li, “Compact UWB and low-RCS vivaldi antenna using ultrathin microwave-absorbing materials,” IEEE Antennas. Wirel. Propag. Lett. 16, 1965–1968 (2017).
[Crossref]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

2016 (1)

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

2015 (2)

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

2014 (2)

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

M. Yoo and S. Lim, “Polarization-independent and ultrawide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

2013 (1)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

2012 (4)

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2011 (2)

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (1)

B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2005 (1)

H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
[Crossref]

1997 (1)

J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
[Crossref]

1993 (1)

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Akselrod, G. M.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Alhabeb, M.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Alù, A.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Averitt, R. D.

Boltasseva, A.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Bowen, P. T.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. L.

F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Burnside, W. D.

J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
[Crossref]

Cai, T.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Cai, W.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Chaudhuri, K.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Chen, H.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Chen, H. R.

Chen, K.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Chen, L.

Chen, M. J.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Chen, Q.

Chen, X. F.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Cheng, Y. Z.

Cheng, Z. Z.

Cui, T. J.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cumming, D. R. S.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Deng, G. S.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Ding, F.

F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ding, X.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Dong, J.

Duan, J. W.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Escorcia-Carranza, I.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Fan, K.

Feng, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Galiffi, E.

E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
[Crossref] [PubMed]

Gao, X. J.

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

Gau, J. R. J.

J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
[Crossref]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gilreath, M.

J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
[Crossref]

Gogotsi, Y.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Gorniaczyk, H.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

Grant, J.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. S. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
[Crossref] [PubMed]

Gu, J. Q.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Guan, F. X.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, H. J.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Guo, W. L.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

Han, J.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Han, J. G.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

He, Q.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hoang, T. B.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Hofferberth, S.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

Holter, H.

H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
[Crossref]

Hou, H. S.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

Huang, J.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Huangfu, J.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Huidobro, P. A.

E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
[Crossref] [PubMed]

Humphreys, M.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Hwang, J. S.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Iwaszczuk, K.

Jeong, H.

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Jepsen, P. U.

Ji, W.

Jiang, T.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Jiang, Y. N.

Jin, H.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Jing, L.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Kang, L.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Kenney, M.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Khalid, A.

Khuyen, B. X.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Kim, Y.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Kim, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Koschny, T.

B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Lai, S.

Lai, W. E.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Lan, S.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, D.

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Lee, K. T.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Lee, Y. P.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Li, G.

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Li, H. P.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

Li, J. R.

P. F. Zhang and J. R. Li, “Compact UWB and low-RCS vivaldi antenna using ultrathin microwave-absorbing materials,” IEEE Antennas. Wirel. Propag. Lett. 16, 1965–1968 (2017).
[Crossref]

Li, W. W.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Liang, J. G.

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

Lim, S.

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

M. Yoo and S. Lim, “Polarization-independent and ultrawide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

Liu, J.

Liu, L.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Y.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Liu, Y. J.

Lu, H. B.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Lu, Y. J.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Luo, D.

Luo, M.

Ma, Y.

Mao, X. S.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Michielssen, E.

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Mirgorodskiy, I.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

Mittra, R.

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monticone, F.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Munk, B. A.

B. A. Munk, Finite Antenna Arrays and FSS (John Wiley and Sons, 2003).

Ouyang, C.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Paris-Mandoki, A.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

Pei, Y. M.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Pendry, J. B.

E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
[Crossref] [PubMed]

Peng, X. Y.

Plum, E.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

Qiu, C. W.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Ramprecht, J.

H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
[Crossref]

Ran, L.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Ranjithan, S.

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

Rhee, J. Y.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Rodrigues, S. P.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Saha, S. C.

Sajer, J. M.

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shah, Y. D.

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

Shalaev, V. M.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Shen, S.

Shen, X. P.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shi, Y.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Smith, D. R.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Soukoulis, C. M.

B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Steyskal, H.

H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
[Crossref]

Strikwerda, A. C.

Su, L.

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

Su, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Sun, S. L.

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Sun, X. W.

Taghinejad, M.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Tang, M. C.

Tang, S. W.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Teng, J. H.

Tetienne, J. P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Tresp, C.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

Urbas, A.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Wang, B.

Wang, B. N.

B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Wang, B. X.

B. X. Wang and G. Z. Wang, “New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency,” Plasmonics 13(1), 123–130 (2018).
[Crossref]

Wang, G. M.

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Wang, G. Z.

B. X. Wang and G. Z. Wang, “New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency,” Plasmonics 13(1), 123–130 (2018).
[Crossref]

Wang, Z.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Wang, Z. X.

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Werner, D. H.

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Wu, S.

Wu, Y. B.

Xia, T. Y.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Xiao, D.

Xiong, H.

Xu, H. X.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Xu, N.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Yang, J.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Yang, Y.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Ye, D.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Yin, S.

Yin, Z. P.

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Yoo, M.

M. Yoo and S. Lim, “Polarization-independent and ultrawide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

Yoo, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Zang, Y. Z.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zeng, X. P.

Zeng, Z. H.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Zhang, D. H.

Zhang, L.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Zhang, P. F.

P. F. Zhang and J. R. Li, “Compact UWB and low-RCS vivaldi antenna using ultrathin microwave-absorbing materials,” IEEE Antennas. Wirel. Propag. Lett. 16, 1965–1968 (2017).
[Crossref]

Zhang, S.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Zhang, W.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Zhang, W. L.

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

Zhang, Z.

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

Zhao, J.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Zhao, J. C.

Zheludev, N. I.

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

Zheng, B.

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

Zhong, S. M.

F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Zhou, L.

M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, and L. Chen, “Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime,” Opt. Express 25(14), 16715–16724 (2017).
[Crossref] [PubMed]

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Zhou, Y.

Zhu, B.

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

Zimmer, C.

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

ACS Nano (1)

E. Galiffi, J. B. Pendry, and P. A. Huidobro, “Broadband tunable THz absorption with singular graphene metasurfaces,” ACS Nano 12(2), 1006–1013 (2018).
[Crossref] [PubMed]

ACS Photonics (2)

M. Kenney, J. Grant, Y. D. Shah, I. Escorcia-Carranza, M. Humphreys, and D. R. S. Cumming, “Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers,” ACS Photonics 4(10), 2604–2612 (2017).
[Crossref]

K. Chaudhuri, M. Alhabeb, Z. X. Wang, V. M. Shalaev, Y. Gogotsi, and A. Boltasseva, “Highly broadband absorber using plasmonic titanium carbide (MXene),” ACS Photonics 5(3), 1115–1122 (2018).
[Crossref]

Adv. Mater. (3)

G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, “Large-area metasurface perfect absorbers from visible to near-infrared,” Adv. Mater. 27(48), 8028–8034 (2015).
[Crossref] [PubMed]

K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù, and C. W. Qiu, “A reconfigurable active huygens’ metalens,” Adv. Mater. 29(17), 1606422 (2017).
[Crossref] [PubMed]

L. Liu, X. Zhang, M. Kenney, X. Su, N. Xu, C. Ouyang, Y. Shi, J. Han, W. Zhang, and S. Zhang, “Broadband metasurfaces with simultaneous control of phase and amplitude,” Adv. Mater. 26(29), 5031–5036 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High-performance bifunctional metasurfaces in transmission and refection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

F. Ding, S. M. Zhong, and S. L. Bozhevolnyi, “Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies,” Adv. Opt. Mater. 6(9), 1701204 (2018).
[Crossref]

Appl. Phys. Lett. (4)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

L. Jing, Z. Wang, Y. Yang, B. Zheng, Y. Liu, and H. Chen, “Chiral metamirrors for broadband spin-selective absorption,” Appl. Phys. Lett. 110(23), 231103 (2017).
[Crossref]

E. Plum and N. I. Zheludev, “Chiral mirrors,” Appl. Phys. Lett. 106(22), 221901 (2015).
[Crossref]

X. P. Shen, Y. Yang, Y. Z. Zang, J. Q. Gu, J. G. Han, W. L. Zhang, and T. J. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Compos. Sci. Technol. (1)

W. W. Li, M. J. Chen, Z. H. Zeng, H. Jin, Y. M. Pei, and Z. Zhang, “Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization,” Compos. Sci. Technol. 145, 10–14 (2017).
[Crossref]

IEEE Antennas. Wirel. Propag. Lett. (1)

P. F. Zhang and J. R. Li, “Compact UWB and low-RCS vivaldi antenna using ultrathin microwave-absorbing materials,” IEEE Antennas. Wirel. Propag. Lett. 16, 1965–1968 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

J. R. J. Gau, W. D. Burnside, and M. Gilreath, “Chebyshev multilevel absorber design concept,” IEEE Trans. Antenn. Propag. 45(8), 1286–1293 (1997).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, J. G. Liang, and X. J. Gao, “Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations,” IEEE Trans. Antenn. Propag. 66(10), 5121–5129 (2018).
[Crossref]

H. Steyskal, J. Ramprecht, and H. Holter, “Spiral Elements for Broad-Band Phased Arrays,” IEEE Trans. Antenn. Propag. 53(8), 2558–2562 (2005).
[Crossref]

M. Yoo and S. Lim, “Polarization-independent and ultrawide band metamaterial absorber using a hexagonal artificial impedance surface and a resistor-capacitor layer,” IEEE Trans. Antenn. Propag. 62(5), 2652–2658 (2014).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, “Design of lightweight, broad-band microwave absorbers using genetic algorithms,” IEEE Trans. Microw. Theory Tech. 41(6), 1024–1031 (1993).
[Crossref]

J. Phys. D Appl. Phys. (1)

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. F. Chen, and Y. P. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K. T. Lee, Y. Liu, D. H. Werner, A. Urbas, and W. Cai, “Preserving Spin States upon Reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Lett. 17(11), 7102–7109 (2017).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Appl. (2)

T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, “High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces,” Phys. Rev. Appl. 8(3), 034033 (2017).
[Crossref]

H. P. Li, G. M. Wang, T. Cai, H. S. Hou, and W. L. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Appl. 11(1), 014043 (2019).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

B. N. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Phys. Rev. Lett. (3)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

C. Tresp, C. Zimmer, I. Mirgorodskiy, H. Gorniaczyk, A. Paris-Mandoki, and S. Hofferberth, “Single-photon absorber based on strongly interacting rydberg atoms,” Phys. Rev. Lett. 117(22), 223001 (2016).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Plasmonics (1)

B. X. Wang and G. Z. Wang, “New type design of the triple-band and five-band metamaterial absorbers at terahertz frequency,” Plasmonics 13(1), 123–130 (2018).
[Crossref]

RSC Advances (1)

Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, “Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal,” RSC Advances 8(8), 4197–4203 (2018).
[Crossref]

Sci. Rep. (1)

D. Lee, H. Jeong, and S. Lim, “Electronically switchable broadband metamaterial absorber,” Sci. Rep. 7(1), 4891 (2017).
[Crossref] [PubMed]

Science (1)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011).
[Crossref] [PubMed]

Other (1)

B. A. Munk, Finite Antenna Arrays and FSS (John Wiley and Sons, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics and working principles of the proposed absorber. (a) An incident wave with a specific circular polarization mode (LCP/RCP) will be perfectly reflected and transformed to orthogonal polarization (RCP/LCP) wave by the metallic board. (b) When the proposed device is illuminated by a broadband circularly polarized wave with a low frequency (f1), middle frequency (f2), and high-frequency (f3), the LCP component will be effectively reflected without changing the polarization mode, while most of the RCP component will be absorbed.
Fig. 2
Fig. 2 Design progress of the absorber. (a) Schematic of initial design of one meta-atom which contains an anti-clockwise spiral. Thickness of two F4B (εr = 2.65 + 0.001i) substrates h1 = h2 = 3 mm, the gap between two layers g = 0.4 mm, resistance of the resistor z = 100Ω. (b) Top view of the meta-atom and detailed parameter configurations. Period of the unit cell p = 8.5 mm, initial diameter of spiral is d0 = 3.6 mm, rotation angle θ = 1.75π rad, width of spiral arms is w0 = 0.6 mm, Slot between two arms s = 0.8 mm. (c) And (d), absorption spectra for different CP wave of anti-clockwise spiral and clockwise spiral, respectively, corresponded structures are shown in insets.
Fig. 3
Fig. 3 Progress of the parameter optimizing. (a) (c) and (e) Depicted absorption spectra of structure shown in Fig. 2(a) for RCP mode changing against with impedance of matching resistor, spirals rotation angles and thickness of upper matching layer respectively. (b), (d) and (f) Reflection spectra of LCP mode changing against the same three parameters.
Fig. 4
Fig. 4 Schematics and analysis of the proposed absorber. (a) Schematic of the meta-atom, the thickness of two F4B substrates h1 = h2 = 3 mm, the gap between two layers g = 0.4 mm, resistance of the resistor z = 100 Ω. (b) Simulated absorption ratio for RCP wave shown by black short dashed line and reflection of LCP wave shown by red solid line. Inset shows detailed structures of one element. The initial diameter of the spiral is d0 = 1.6 mm, rotation angle θ = 6.25π rad, width of spiral arms is w0 = 0.5 mm, and w1 = 0.2 mm at the terminus. The slot between two arms s = 0.35 mm. (c) Real and imaginary parts of the input impedance at the equivalent feed port. (d) (e) and (f) Simulated normalized surface current distributions under RCP incidence at f1 = 10.8 GHz, f2 = 14 GHz, and f3 = 17 GHz, the square purple circles show resonance positions at corresponding frequencies.
Fig. 5
Fig. 5 Fabricated sample and its performances. Photographs of the (a) fabricated spiral array and (b) top view of the absorber sample. (c) Simulated and measured absorption ratios (shown in red color) as well as reflection ratios (shown in blue color) for the incidence of RCP wave. (d) Simulated and measured reflection ratios (shown in blue color) and absorption ratios (shown in red color) for the incidence of LCP wave.

Metrics