Abstract

The suggested circulator is formed by a concave pattern graphene junction and three waveguides symmetrically connected to it. The graphene is supported by SiO2/Si layers. The circulation behavior is based on the nonsymmetry of the graphene conductivity tensor which appears due to magnetization by a DC magnetic field applied normally to the graphene plane. The symmetrical mode propagating in the nonmagnetized graphene waveguide, is transformed in magnetized region to an edge-guided one providing the propagation from one port to another port and isolating the third port. The device characteristics depend on the physical parameters of the graphene junction, its dimensions and parameters of the substrate. We discuss a choice of these parameters to maximize the frequency band and isolation level and to minimize the losses and the applied DC magnetic field. The theoretical arguments are confirmed by full-wave computations. In an example, we demonstrate that the circulator can have the frequency band of 42% (from 2.75 THz to 4.2 THz), with the isolation higher than 17 dB and the insertion losses better that 2 dB, provided by the biasing DC magnetic field 1.5 T and the chemical potential of graphene 0.15 eV.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-port graphene-based electromagnetic circulator in the terahertz and infrared frequency ranges with a very low loss and wideband response

Vahid Nikkhah, Ahmad Bakhtafrouz, Mohsen Maddahali, and Somaye Kaviani Dezaki
J. Opt. Soc. Am. B 35(8) 1754-1763 (2018)

Dynamically controllable graphene terahertz splitters with nonreciprocal properties

Victor Dmitriev and Wagner Castro
Appl. Opt. 58(24) 6513-6518 (2019)

Graphene plasmons isolator based on non-reciprocal coupling

Bofeng Zhu, Guobin Ren, Yixiao Gao, Beilei Wu, Qiaoyi Wang, Chenglong Wan, and Shuisheng Jian
Opt. Express 23(12) 16071-16083 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Helszain, The Stripline Circulators: Theory and Practice (Wiley, 2008).
    [Crossref]
  2. Y. Konishi, “Lumped element circulators,” IEEE Tran. on Magnetics 11(5), 1262–1266 (1975).
    [Crossref]
  3. V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
    [Crossref]
  4. P. Pintus, P. D. Fabrizio, and B. E John, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
    [Crossref] [PubMed]
  5. D. Jalas, P. Y. Alexander, and E. Manfred, “Optical three-port circulators made with ring resonators,” Opt. Lett. 39(6), 1425–1428 (2014).
    [Crossref] [PubMed]
  6. D. K. Linkhart, Microwave Circulator Design (Artech House, 2014).
  7. W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
    [Crossref]
  8. M. E. Hines, “Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices,” IEEE Trans. Microwave Theory and Tech. 19(5), 442–451 (1971).
    [Crossref]
  9. G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
    [Crossref]
  10. L. E. Davis and R. Sloan, “Measurements of V-band n-type InSb junction circulators,” IEEE Trans. Microwave Theory Tech. 52(2), 482–488 (2004).
    [Crossref]
  11. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  12. G. P. A. Dias and N. M. M. R. Peres, An Introduction To Graphene Plasmonics (World Scientific, 2016).
  13. B. Zhu, G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, “Graphene plasmons isolator based on non-reciprocal coupling,” Opt. Express 23(12), 16071–16083 (2015).
    [Crossref] [PubMed]
  14. D. L. Sounas, Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. on Microwave Theory and Technol. 60(4), 901–914 (2012).
    [Crossref]
  15. M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
    [Crossref] [PubMed]
  16. D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
    [Crossref]
  17. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
    [Crossref]
  18. X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
    [Crossref]
  19. V. Dmitriev and W. Castro, “Dynamically controllable terahertz graphene Y-circulator,” IEEE Trans. Magnetics 55(2), 4001712 (2019).
    [Crossref]
  20. V. Nikkhah, A. Bakhtafrouz, M. Maddahali, and S. K. Dezaki, “Three-port graphene-based electromagnetic circulator in the terahertz and infrared frequency ranges with a very low loss and wideband response,” J. Opt. Soc. Am. B 35(8), 1754–1763 (2018).
    [Crossref]
  21. V. Dmitriev, S. L. Matos, and C. Nascimento, “Graphene 3-port circulator based on edge-guide mode propagation,” Microwave and Optoelectronics Conference (IMOC), (SBMO/IEEE MTT-S International. IEEE, 2017), pp. 1–4.
  22. A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
    [Crossref]
  23. I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
    [Crossref]
  24. A. Principi and G. Vignale, “Intrinsic lifetime of Dirac plasmons in graphene,” Phys. Rev. B 88(19), 195405 (2013).
    [Crossref]
  25. www.comsol.com
  26. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  27. H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
    [Crossref]
  28. S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
    [Crossref]
  29. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
    [Crossref]

2019 (1)

V. Dmitriev and W. Castro, “Dynamically controllable terahertz graphene Y-circulator,” IEEE Trans. Magnetics 55(2), 4001712 (2019).
[Crossref]

2018 (1)

2017 (1)

W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
[Crossref]

2016 (3)

V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
[Crossref]

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

2015 (3)

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

B. Zhu, G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, “Graphene plasmons isolator based on non-reciprocal coupling,” Opt. Express 23(12), 16071–16083 (2015).
[Crossref] [PubMed]

G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
[Crossref]

2014 (1)

2013 (4)

P. Pintus, P. D. Fabrizio, and B. E John, “Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform,” Opt. Express 21(4), 5041–5052 (2013).
[Crossref] [PubMed]

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

A. Principi and G. Vignale, “Intrinsic lifetime of Dirac plasmons in graphene,” Phys. Rev. B 88(19), 195405 (2013).
[Crossref]

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

2012 (1)

D. L. Sounas, Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. on Microwave Theory and Technol. 60(4), 901–914 (2012).
[Crossref]

2011 (4)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

2004 (2)

L. E. Davis and R. Sloan, “Measurements of V-band n-type InSb junction circulators,” IEEE Trans. Microwave Theory Tech. 52(2), 482–488 (2004).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

1975 (1)

Y. Konishi, “Lumped element circulators,” IEEE Tran. on Magnetics 11(5), 1262–1266 (1975).
[Crossref]

1971 (1)

M. E. Hines, “Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices,” IEEE Trans. Microwave Theory and Tech. 19(5), 442–451 (1971).
[Crossref]

Alexander, P. Y.

Bakhtafrouz, A.

Bludov, Y. V.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Bostwick, A.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Carrier, J. P.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Castro, W.

V. Dmitriev and W. Castro, “Dynamically controllable terahertz graphene Y-circulator,” IEEE Trans. Magnetics 55(2), 4001712 (2019).
[Crossref]

Castro Neto, A. H.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Chen, H.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Chua, S.

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

Crassee, I.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Davis, L. E.

L. E. Davis and R. Sloan, “Measurements of V-band n-type InSb junction circulators,” IEEE Trans. Microwave Theory Tech. 52(2), 482–488 (2004).
[Crossref]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Dezaki, S. K.

Dias, G. P. A.

G. P. A. Dias and N. M. M. R. Peres, An Introduction To Graphene Plasmonics (World Scientific, 2016).

Dmitriev, V.

V. Dmitriev and W. Castro, “Dynamically controllable terahertz graphene Y-circulator,” IEEE Trans. Magnetics 55(2), 4001712 (2019).
[Crossref]

V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
[Crossref]

V. Dmitriev, S. L. Matos, and C. Nascimento, “Graphene 3-port circulator based on edge-guide mode propagation,” Microwave and Optoelectronics Conference (IMOC), (SBMO/IEEE MTT-S International. IEEE, 2017), pp. 1–4.

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fabrizio, P. D.

Ferreira, A.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gao, Y.

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guermoune, A.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Hao, R.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Helszain, J.

J. Helszain, The Stripline Circulators: Theory and Practice (Wiley, 2008).
[Crossref]

Hines, M. E.

M. E. Hines, “Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices,” IEEE Trans. Microwave Theory and Tech. 19(5), 442–451 (1971).
[Crossref]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Hou, H.

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

Ionescu, A. M.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Jalas, D.

Jawad, G. N.

G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
[Crossref]

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

John, B. E

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Kong, F.

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

Konishi, Y.

Y. Konishi, “Lumped element circulators,” IEEE Tran. on Magnetics 11(5), 1262–1266 (1975).
[Crossref]

Kuzmenko, A. B.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

Lech, R.

W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
[Crossref]

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Levallois, J.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Li, E.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Li, K.

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

Lin, X.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Linkhart, D. K.

D. K. Linkhart, Microwave Circulator Design (Artech House, 2014).

Maddahali, M.

Manfred, E.

Marel, D. V.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

Marel, D. V. D.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Martins, L.

V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
[Crossref]

Marynowski, W.

W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
[Crossref]

Matos, S. L.

V. Dmitriev, S. L. Matos, and C. Nascimento, “Graphene 3-port circulator based on edge-guide mode propagation,” Microwave and Optoelectronics Conference (IMOC), (SBMO/IEEE MTT-S International. IEEE, 2017), pp. 1–4.

Mazur, Jerzy

W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
[Crossref]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Missous, M.

G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
[Crossref]

Moldovan, C.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Nascimento, C.

V. Dmitriev, S. L. Matos, and C. Nascimento, “Graphene 3-port circulator based on edge-guide mode propagation,” Microwave and Optoelectronics Conference (IMOC), (SBMO/IEEE MTT-S International. IEEE, 2017), pp. 1–4.

Nguyen, H. V.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Nikkhah, V.

Novoselov, K. S.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ostler, M.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

Palacios, T.

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

Pereira, V.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Peres, N. M. M. R.

G. P. A. Dias and N. M. M. R. Peres, An Introduction To Graphene Plasmonics (World Scientific, 2016).

Peres, N. M. R.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Pintus, P.

Portela, G.

V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
[Crossref]

Poumirol, J. M.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Principi, A.

A. Principi and G. Vignale, “Intrinsic lifetime of Dirac plasmons in graphene,” Phys. Rev. B 88(19), 195405 (2013).
[Crossref]

Ren, G.

Rotenberg, E.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

Seyller, T.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Sheng, S.

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Siaj, M. S.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Skulason, H. S.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

Sloan, R.

G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
[Crossref]

L. E. Davis and R. Sloan, “Measurements of V-band n-type InSb junction circulators,” IEEE Trans. Microwave Theory Tech. 52(2), 482–488 (2004).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Sounas, D. L.

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

D. L. Sounas, Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. on Microwave Theory and Technol. 60(4), 901–914 (2012).
[Crossref]

Tamagnone, M.

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Taniguchi, T.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Teng, J.

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Viana-Gomes, J.

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Vignale, G.

A. Principi and G. Vignale, “Intrinsic lifetime of Dirac plasmons in graphene,” Phys. Rev. B 88(19), 195405 (2013).
[Crossref]

Walter, A. L.

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

Wan, C.

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Wang, Q.

Watanabe, K.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Wu, B.

Xu, Y.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Zhang, B.

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhu, B.

Zhuang, H.

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

Appl. Phys. Lett. (1)

D. L. Sounas, H. S. Skulason, H. V. Nguyen, A. Guermoune, and M. S. Siaj, “Faraday rotation in magnetically biased graphene at microwave frequencies,” Appl. Phys. Lett. 102(19), 191901 (2013).
[Crossref]

IEEE Tran. on Magnetics (1)

Y. Konishi, “Lumped element circulators,” IEEE Tran. on Magnetics 11(5), 1262–1266 (1975).
[Crossref]

IEEE Trans. Magnetics (1)

V. Dmitriev and W. Castro, “Dynamically controllable terahertz graphene Y-circulator,” IEEE Trans. Magnetics 55(2), 4001712 (2019).
[Crossref]

IEEE Trans. Microwave Theory and Tech. (1)

M. E. Hines, “Reciprocal and nonreciprocal modes of propagation in ferrite stripline and microstrip devices,” IEEE Trans. Microwave Theory and Tech. 19(5), 442–451 (1971).
[Crossref]

IEEE Trans. Microwave Theory Tech. (2)

G. N. Jawad, R. Sloan, and M. Missous, “On the design of gyroelectric resonators and circulators using a magnetically biased 2-D electron gas (2-DEG),” IEEE Trans. Microwave Theory Tech. 63(5), 1512–1517 (2015).
[Crossref]

L. E. Davis and R. Sloan, “Measurements of V-band n-type InSb junction circulators,” IEEE Trans. Microwave Theory Tech. 52(2), 482–488 (2004).
[Crossref]

IEEE Trans. on Microwave Theory and Technol. (2)

W. Marynowski, R. Lech, and Jerzy Mazur, “Edge-guided mode performance and applications in nonreciprocal millimeter-wave gyroelectric components,” IEEE Trans. on Microwave Theory and Technol. 65(12), 4883–4892 (2017).
[Crossref]

D. L. Sounas, Gyrotropy and non-reciprocity of graphene for microwave applications,” IEEE Trans. on Microwave Theory and Technol. 60(4), 901–914 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

M. Tamagnone, C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216–11224 (2016).
[Crossref] [PubMed]

Nat. Nanotechn. (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechn. 5(10), 722–727 (2010).
[Crossref]

Nat. Phys. (2)

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. D. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single- and multilayer graphene,” Nat. Phys. 7(1), 48–51 (2011).
[Crossref]

I. Crassee, J. Levallois, A. L. Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. V. Marel, and A. B. Kuzmenko, “Giant faraday rotation in single-and multilayer graphene,” Nat. Phys. 7(1), 48–51(2011).
[Crossref]

New J. Phys. (1)

X. Lin, Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, “Unidirectional surface plasmons in nonreciprocal graphene,” New J. Phys. 15(11), 113003 (2013).
[Crossref]

Opt. Commun. (2)

H. Hou, J. Teng, T. Palacios, and S. Chua, “Edge plasmons and cut-off behavior of graphene nano-ribbon waveguides,” Opt. Commun. 370, 226–230 (2016).
[Crossref]

S. Sheng, K. Li, F. Kong, and H. Zhuang, “Analysis of a tunable band-pass plasmonic filter based on graphene nanodisk resonator,” Opt. Commun. 336, 189–196 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photon. Netw. Commun. (1)

V. Dmitriev, G. Portela, and L. Martins, “Three-port circulators with low symmetry based on photonic crystals and magneto-optical resonators,” Photon. Netw. Commun. 31(1), 56–64 (2016).
[Crossref]

Phys. Rev. B (2)

A. Principi and G. Vignale, “Intrinsic lifetime of Dirac plasmons in graphene,” Phys. Rev. B 88(19), 195405 (2013).
[Crossref]

A. Ferreira, J. Viana-Gomes, Y. V. Bludov, V. Pereira, N. M. R. Peres, and A. H. Castro Neto, “Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for the study of magneto-optical transport in solids,” Phys. Rev. B 84(23), 235410 (2011).
[Crossref]

Science (1)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Other (5)

G. P. A. Dias and N. M. M. R. Peres, An Introduction To Graphene Plasmonics (World Scientific, 2016).

J. Helszain, The Stripline Circulators: Theory and Practice (Wiley, 2008).
[Crossref]

D. K. Linkhart, Microwave Circulator Design (Artech House, 2014).

www.comsol.com

V. Dmitriev, S. L. Matos, and C. Nascimento, “Graphene 3-port circulator based on edge-guide mode propagation,” Microwave and Optoelectronics Conference (IMOC), (SBMO/IEEE MTT-S International. IEEE, 2017), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Sketch of graphene circulator, (a) top view, (b) front view.
Fig. 2
Fig. 2 Real and imaginary parts of components of conductivity tensor (a) σxx and (b) σxy, μc = 0.15 eV, B0 = 0.5 T, 1.5 T and 3 T.
Fig. 3
Fig. 3 Real and imaginary parts of components (a) σxx and (b) σxy of conductivity of graphene, μc = 0.15 eV, μc = 0.3 eV, B0 = 1.5 T.
Fig. 4
Fig. 4 Gyrotropy g for different τ versus frequency, μc = 0.15 eV, B0 = 1.5 T.
Fig. 5
Fig. 5 Ez component of symmetric edge mode with (a) B0 = 0 T, (b) B0 = 1.5 T, asymmetric edge mode with (c) B0 = 0 T, (d) B0 = 1.5 T at the frequency 4.5 THz. Dependence of the real (e) and imaginary (f) parts of effective indexon frequency, μc = 0.15 eV with w = 1 μm and w = 2 μm.
Fig. 6
Fig. 6 Z-dependence of normalized electric field |E| in point A for frequencies f = 2.75 THz and f = 4.2 THz, w = 2 μm, R = 2.75 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 7
Fig. 7 Normalized E field components at frequency f = 2.75 THz a) along line AB and b) along line CD, w = 2 μm, R = 2,75 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 8
Fig. 8 Normalized E field components at frequency f =3.45 THz a) along line AB and b) along line CD, w = 2 μm, R = 2,75 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 9
Fig. 9 Normalized E field components at frequency f =4.2 THz a) along line AB and b) along line CD, w = 2 μm, R = 2,75 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 10
Fig. 10 Transmission, reflection and isolation coefficients for circulator, w = 2 μm, R = 2.75 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 11
Fig. 11 Dependence of bandwidth on radius of circulator, w = 2 μm, B0 = 1.5 T, μc = 0.15 eV.
Fig. 12
Fig. 12 Transmission, reflection and isolation coefficients for circulator, w = 1 μm, R = 2,75 μm, B0 = 1.5 T, μc = 0.15 eV.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ S ] = ( S 11 S 12 S 13 S 13 S 11 S 12 S 12 S 13 S 11 ) ,
[ σ s ] = [ σ x x σ x y σ x y σ x x ] .
σ x x = q e 2 μ c π 2 1 / τ i ω ω c 2   ( ω + i 1 / τ ) 2 ,
σ x y = q e 2 μ c π 2 ω c ω c 2   ( ω + i 1 / τ ) 2 ,
ω c = q e B 0 v F 2 μ c ,
g = R e { σ x y } I m { σ x x } = ω c ω ( ω 2 ω c 2 ( 1 / τ ) 2 ) ( ω 2 ω c 2 + ( 1 / τ ) 2 ) .

Metrics