Abstract

In this paper, the dynamics of the spontaneous emission rate of Rhodamine 6G dye molecules, coupled into disorder-induced optical cavities in a scattering medium, is investigated by a time-resolved spectroscopic technique. The system is a wedge-type wave-guiding system formed by a polymer with randomly positioned air inclusions. The scattering of light in the medium induces transverse Anderson localization, which gives rise to quasi-optical modes or Anderson-localized cavities. The presence of these modes strongly enhances the decay emission of the emitters. The waveguide is fabricated by a conventional fiber drawing technique inside a fused silica micro-rod. Localized optical modes are observed to appear in the form of sharp spectral resonance peaks at various frequencies throughout the photoluminescence spectrum of the dye molecules. The spontaneous emission rate of the molecules on resonance with the localized modes is measured to enhance by a factor of up to 6.8, which elucidates that the transverse Anderson localization enables an efficient way to alter the spontaneous emission rate of quantum emitters in an optically asymmetric simple wedge-type photonic waveguide, offering a moderate alternative to highly engineered sophisticated light-wave devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides

Alisa Javadi, Sebastian Maibom, Luca Sapienza, Henri Thyrrestrup, Pedro D. García, and Peter Lodahl
Opt. Express 22(25) 30992-31001 (2014)

Dye-embedded and nanopatterned hyperbolic metamaterials for spontaneous emission rate enhancement

K. H. Krishna, K. V. Sreekanth, and G. Strangi
J. Opt. Soc. Am. B 33(6) 1038-1043 (2016)

Polariton-assisted splitting of broadband emission spectra of strongly coupled organic dye excitons in tunable optical microcavity

Dmitriy Dovzhenko, Konstantin Mochalov, Ivan Vaskan, Irina Kryukova, Yury Rakovich, and Igor Nabiev
Opt. Express 27(4) 4077-4089 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
    [Crossref]
  2. D. S. Wiersma, “Physics. Random quantum networks,” Science 327(5971), 1333–1334 (2010).
    [Crossref] [PubMed]
  3. L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
    [Crossref] [PubMed]
  4. A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
    [Crossref] [PubMed]
  5. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
    [Crossref] [PubMed]
  6. G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
    [Crossref]
  7. F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
    [Crossref] [PubMed]
  8. K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
    [Crossref] [PubMed]
  9. J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
    [Crossref] [PubMed]
  10. P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
    [Crossref]
  11. P. D. García and P. Lodahl, “Physics of quantum light emitters in disordered photonic nanostructures,” Ann. Phys. (Berlin) 529(8), 1600351 (2017).
    [Crossref]
  12. S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
    [Crossref]
  13. J. P. Vasco and S. Hughes, “Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides,” Phys. Rev. B 95(22), 224202 (2017).
    [Crossref]
  14. H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
    [Crossref] [PubMed]
  15. P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
    [Crossref]
  16. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
    [Crossref] [PubMed]
  17. R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
    [Crossref] [PubMed]
  18. A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond. 4(89), 237–291 (1960).
  19. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiophys. Quantum Electron. 23(6), 766–767 (1980).
  20. H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
    [Crossref] [PubMed]
  21. M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
    [Crossref]
  22. A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
    [Crossref]
  23. S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
    [Crossref]
  24. B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
    [Crossref]
  25. B. Gökbulut, E. Yartasi, E. Sunar, O. I. Kalaoglu-Altan, T. N. Gevrek, A. Sanyal, and M. N. Inci, “Humidity induced inhibition and enhancement of spontaneous emission of dye molecules in a single PEG nanofiber,” Opt. Mater. Express 8(3), 568 (2018).
    [Crossref]
  26. B. Gökbulut and M. N. Inci, “Inhibition of spontaneous emission in a leaky mode wedge nanocavity,” Photon. Nanostructures 32, 68–73 (2018).
    [Crossref]
  27. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29(16), 1897–1899 (2004).
    [Crossref] [PubMed]
  28. D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
    [Crossref]
  29. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(681), 1 (1946).
  30. B. Romeira and A. Fiore, “Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers,” IEEE J. Quantum Electron. 54(2), 1 (2018).
    [Crossref]
  31. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [Crossref]
  32. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [Crossref]
  33. G. Mason and N. R. Morrow, “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes,” J. Colloid Interface Sci. 141(1), 262–274 (1991).
    [Crossref]
  34. B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
    [Crossref] [PubMed]
  35. T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
    [Crossref]
  36. S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
    [Crossref] [PubMed]
  37. P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
    [Crossref]
  38. M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
    [Crossref] [PubMed]
  39. J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
    [Crossref] [PubMed]
  40. M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
    [Crossref] [PubMed]
  41. P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express 18(6), 6360–6365 (2010).
    [Crossref] [PubMed]

2019 (1)

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

2018 (4)

B. Gökbulut, E. Yartasi, E. Sunar, O. I. Kalaoglu-Altan, T. N. Gevrek, A. Sanyal, and M. N. Inci, “Humidity induced inhibition and enhancement of spontaneous emission of dye molecules in a single PEG nanofiber,” Opt. Mater. Express 8(3), 568 (2018).
[Crossref]

B. Gökbulut and M. N. Inci, “Inhibition of spontaneous emission in a leaky mode wedge nanocavity,” Photon. Nanostructures 32, 68–73 (2018).
[Crossref]

B. Romeira and A. Fiore, “Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers,” IEEE J. Quantum Electron. 54(2), 1 (2018).
[Crossref]

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

2017 (5)

P. D. García and P. Lodahl, “Physics of quantum light emitters in disordered photonic nanostructures,” Ann. Phys. (Berlin) 529(8), 1600351 (2017).
[Crossref]

J. P. Vasco and S. Hughes, “Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides,” Phys. Rev. B 95(22), 224202 (2017).
[Crossref]

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

2015 (2)

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

2014 (3)

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

2013 (4)

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

2012 (3)

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

2011 (2)

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

2010 (5)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

D. S. Wiersma, “Physics. Random quantum networks,” Science 327(5971), 1333–1334 (2010).
[Crossref] [PubMed]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

P. V. Ruijgrok, R. Wüest, A. A. Rebane, A. Renn, and V. Sandoghdar, “Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium,” Opt. Express 18(6), 6360–6365 (2010).
[Crossref] [PubMed]

2009 (2)

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
[Crossref] [PubMed]

2007 (1)

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

2004 (1)

1999 (1)

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

1991 (1)

G. Mason and N. R. Morrow, “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes,” J. Colloid Interface Sci. 141(1), 262–274 (1991).
[Crossref]

1989 (1)

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref] [PubMed]

1980 (1)

S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiophys. Quantum Electron. 23(6), 766–767 (1980).

1960 (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond. 4(89), 237–291 (1960).

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(681), 1 (1946).

Abaie, B.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

Abdullaev, F. K.

S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiophys. Quantum Electron. 23(6), 766–767 (1980).

Abdullaev, S.

S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiophys. Quantum Electron. 23(6), 766–767 (1980).

Andreani, L. C.

Arregui, G.

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

Balet, L.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Ballato, J.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Barthelemy, P.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Birowosuto, M. D.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

Bondareff, P.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

Burresi, M.

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

Busch, K.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Carminati, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Caselli, N.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Christodoulides, D. N.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Chung, C.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Combrie, S.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Combrié, S.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Crane, T.

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

Crescimanno, M.

De Raedt, H.

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref] [PubMed]

De Rossi, A.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

de Vries, P.

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref] [PubMed]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Demir, M. M.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

Fiore, A.

B. Romeira and A. Fiore, “Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers,” IEEE J. Quantum Electron. 54(2), 1 (2018).
[Crossref]

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Froufe-Perez, L. S.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

Gabet, R.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Gao, J.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Garcia, P. D.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

García, P. D.

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

P. D. García and P. Lodahl, “Physics of quantum light emitters in disordered photonic nanostructures,” Ann. Phys. (Berlin) 529(8), 1600351 (2017).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

Gayral, B.

J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Gerace, D.

Gérard, J. M.

J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
[Crossref]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Gerardino, A.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Gevrek, T. N.

Gökbulut, B.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

B. Gökbulut, E. Yartasi, E. Sunar, O. I. Kalaoglu-Altan, T. N. Gevrek, A. Sanyal, and M. N. Inci, “Humidity induced inhibition and enhancement of spontaneous emission of dye molecules in a single PEG nanofiber,” Opt. Mater. Express 8(3), 568 (2018).
[Crossref]

B. Gökbulut and M. N. Inci, “Inhibition of spontaneous emission in a leaky mode wedge nanocavity,” Photon. Nanostructures 32, 68–73 (2018).
[Crossref]

Guner, T.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

Guo-Qiang, L.

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

Gurioli, M.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Habert, B.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

Hawkins, T.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Hsieh, P.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Huffaker, D. L.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Hughes, S.

J. P. Vasco and S. Hughes, “Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides,” Phys. Rev. B 95(22), 224202 (2017).
[Crossref]

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Ilic, R.

Inanç, A.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

Inci, M. N.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

B. Gökbulut, E. Yartasi, E. Sunar, O. I. Kalaoglu-Altan, T. N. Gevrek, A. Sanyal, and M. N. Inci, “Humidity induced inhibition and enhancement of spontaneous emission of dye molecules in a single PEG nanofiber,” Opt. Mater. Express 8(3), 568 (2018).
[Crossref]

B. Gökbulut and M. N. Inci, “Inhibition of spontaneous emission in a leaky mode wedge nanocavity,” Photon. Nanostructures 32, 68–73 (2018).
[Crossref]

Intonti, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Ioffe, A. F.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond. 4(89), 237–291 (1960).

Jaouën, Y.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Javadi, A.

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

Kalaoglu-Altan, O. I.

Karbasi, S.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Kehagias, N.

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

Kirsanske, G.

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

Koch, K. W.

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Lagendijk, A.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref] [PubMed]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Lehmann, T. B.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

Lehoucq, G.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Li, L. H.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Liang, B.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Lodahl, P.

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

P. D. García and P. Lodahl, “Physics of quantum light emitters in disordered photonic nanostructures,” Ann. Phys. (Berlin) 529(8), 1600351 (2017).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Lu, M.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Luo, X.

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

Mafi, A.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Maibom, S.

Mason, G.

G. Mason and N. R. Morrow, “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes,” J. Colloid Interface Sci. 141(1), 262–274 (1991).
[Crossref]

McMillan, J. F.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Mobini, E.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

Mookherjea, S.

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

Morrow, N. R.

G. Mason and N. R. Morrow, “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes,” J. Colloid Interface Sci. 141(1), 262–274 (1991).
[Crossref]

Mosk, A. P.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

Navarro-Urrios, D.

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

Ong, J. R.

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

Panoiu, N. C.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Patterson, M.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Pierrat, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(681), 1 (1946).

Rebane, A. A.

Regel, A. R.

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond. 4(89), 237–291 (1960).

Renn, A.

Riboli, F.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Rix, K. R.

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

Romeira, B.

B. Romeira and A. Fiore, “Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers,” IEEE J. Quantum Electron. 54(2), 1 (2018).
[Crossref]

Ruijgrok, P. V.

Sandoghdar, V.

Sanyal, A.

Sapienza, L.

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Sapienza, R.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

Schmitteckert, P.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Segev, M.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Silberberg, Y.

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Skipetrov, S. E.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

Smolka, S.

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Stobbe, S.

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Sunar, E.

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

Thyrrestrup, H.

A. Javadi, S. Maibom, L. Sapienza, H. Thyrrestrup, P. D. García, and P. Lodahl, “Statistical measurements of quantum emitters coupled to Anderson-localized modes in disordered photonic-crystal waveguides,” Opt. Express 22(25), 30992–31001 (2014).
[Crossref] [PubMed]

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Topcu, G.

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

Topolancik, J.

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Torres, C. M. S.

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

Tran, N.-V.-Q.

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Trojak, O. J.

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

Tsai, M.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

van Hulst, N. F.

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

Vasco, J. P.

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

J. P. Vasco and S. Hughes, “Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides,” Phys. Rev. B 95(22), 224202 (2017).
[Crossref]

Vignolini, S.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

Vollmer, F.

J. Topolancik, F. Vollmer, R. Ilic, and M. Crescimanno, “Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder,” Opt. Express 17(15), 12470–12480 (2009).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

Vos, W. L.

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

Vynck, K.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

Wiersma, D. S.

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

D. S. Wiersma, “Physics. Random quantum networks,” Science 327(5971), 1333–1334 (2010).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Wong, C. W.

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Wüest, R.

Xavier, S.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Xu, X.

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Yartasi, E.

ACS Photonics (1)

T. Crane, O. J. Trojak, J. P. Vasco, S. Hughes, and L. Sapienza, “Anderson localization of visible light on a nanophotonic chip,” ACS Photonics 4(9), 2274–2280 (2017).
[Crossref]

Adv. Opt. Photonics (1)

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

Ann. Phys. (Berlin) (1)

P. D. García and P. Lodahl, “Physics of quantum light emitters in disordered photonic nanostructures,” Ann. Phys. (Berlin) 529(8), 1600351 (2017).
[Crossref]

Appl. Phys. Lett. (1)

P. D. García, A. Javadi, H. Thyrrestrup, and P. Lodahl, “Quantifying the intrinsic amount of fabrication disorder in photonic-crystal waveguides from optical far-field intensity measurements,” Appl. Phys. Lett. 102(3), 031101 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

B. Romeira and A. Fiore, “Purcell effect in the stimulated and spontaneous emission rates of nanoscale semiconductor lasers,” IEEE J. Quantum Electron. 54(2), 1 (2018).
[Crossref]

J. Colloid Interface Sci. (1)

G. Mason and N. R. Morrow, “Capillary behavior of a perfectly wetting liquid in irregular triangular tubes,” J. Colloid Interface Sci. 141(1), 262–274 (1991).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

B. Gökbulut, A. Inanç, G. Topcu, T. Guner, M. M. Demir, and M. N. Inci, “Enhancement of the spontaneous emission rate of Perovskite nanowires coupled into cylindrical hollow nanocavities formed on the surface of polystyrene microfibers,” J. Phys. Chem. C 123(14), 9343–9351 (2019).
[Crossref]

Light Sci. Appl. (1)

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light Sci. Appl. 6(8), e17041 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

F. Riboli, N. Caselli, S. Vignolini, F. Intonti, K. Vynck, P. Barthelemy, A. Gerardino, L. Balet, L. H. Li, A. Fiore, M. Gurioli, and D. S. Wiersma, “Engineering of light confinement in strongly scattering disordered media,” Nat. Mater. 13(7), 720–725 (2014).
[Crossref] [PubMed]

K. Vynck, M. Burresi, F. Riboli, and D. S. Wiersma, “Photon management in two-dimensional disordered media,” Nat. Mater. 11(12), 1017–1022 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Mookherjea, J. R. Ong, X. Luo, and L. Guo-Qiang, “Electronic control of optical Anderson localization modes,” Nat. Nanotechnol. 9(5), 365–371 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Segev, Y. Silberberg, and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

D. S. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

Nat. Phys. (1)

P. Hsieh, C. Chung, J. F. McMillan, M. Tsai, M. Lu, N. C. Panoiu, and C. W. Wong, “Photon transport enhanced by transverse Anderson localization in disordered superlattices,” Nat. Phys. 11(3), 268–274 (2015).
[Crossref]

Nature (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

New J. Phys. (1)

S. Smolka, H. Thyrrestrup, L. Sapienza, T. B. Lehmann, K. R. Rix, L. S. Froufe-Perez, P. D. Garcia, and P. Lodahl, “Probing statistical properties of Anderson localization with quantum emitters,” New J. Phys. 13(6), 063044 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (2)

Photon. Nanostructures (1)

B. Gökbulut and M. N. Inci, “Inhibition of spontaneous emission in a leaky mode wedge nanocavity,” Photon. Nanostructures 32, 68–73 (2018).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(681), 1 (1946).

Phys. Rev. B (3)

J. P. Vasco and S. Hughes, “Statistics of Anderson-localized modes in disordered photonic crystal slab waveguides,” Phys. Rev. B 95(22), 224202 (2017).
[Crossref]

G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. S. Torres, and P. D. García, “All-optical radiofrequency modulation of Anderson-localized modes,” Phys. Rev. B 98(18), 180202 (2018).
[Crossref]

P. D. García, G. Kirsanske, A. Javadi, S. Stobbe, and P. Lodahl, “Two mechanisms of disorder-induced localization in photonic-crystal waveguides,” Phys. Rev. B 96(14), 144201 (2017).
[Crossref]

Phys. Rev. Lett. (8)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

R. Sapienza, P. Bondareff, R. Pierrat, B. Habert, R. Carminati, and N. F. van Hulst, “Long-tail statistics of the Purcell factor in disordered media driven by near-field interactions,” Phys. Rev. Lett. 106(16), 163902 (2011).
[Crossref] [PubMed]

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref] [PubMed]

H. Thyrrestrup, S. Smolka, L. Sapienza, and P. Lodahl, “Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes,” Phys. Rev. Lett. 108(11), 113901 (2012).
[Crossref] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[Crossref]

M. D. Birowosuto, S. E. Skipetrov, W. L. Vos, and A. P. Mosk, “Observation of spatial fluctuations of the local density of states in random photonic media,” Phys. Rev. Lett. 105(1), 013904 (2010).
[Crossref] [PubMed]

M. Patterson, S. Hughes, S. Combrié, N.-V.-Q. Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102(25), 253903 (2009).
[Crossref] [PubMed]

Prog. Semicond. (1)

A. F. Ioffe and A. R. Regel, “Non-crystalline, amorphous, and liquid electronic semiconductors,” Prog. Semicond. 4(89), 237–291 (1960).

Radiophys. Quantum Electron. (1)

S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiophys. Quantum Electron. 23(6), 766–767 (1980).

Sci. Rep. (1)

J. Gao, S. Combrie, B. Liang, P. Schmitteckert, G. Lehoucq, S. Xavier, X. Xu, K. Busch, D. L. Huffaker, A. De Rossi, and C. W. Wong, “Strongly coupled slow-light polaritons in one-dimensional disordered localized states,” Sci. Rep. 3(1), 1994 (2013).
[Crossref] [PubMed]

Science (2)

D. S. Wiersma, “Physics. Random quantum networks,” Science 327(5971), 1333–1334 (2010).
[Crossref] [PubMed]

L. Sapienza, H. Thyrrestrup, S. Stobbe, P. D. Garcia, S. Smolka, and P. Lodahl, “Cavity quantum electrodynamics with Anderson-localized modes,” Science 327(5971), 1352–1355 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) SEM image of the cross-sectional area of three different wedge-waveguides. (b) The fluorescence microscopy image of the cross-sectional area of the waveguides. (c) The schematic illustration of the capillary effect and the Anderson localization within the wedge-waveguide 1.
Fig. 2
Fig. 2 Transverse Anderson localization scheme: A pump beam entering the disordered medium, which is random in the two transverse dimensions (xy-plane) but is considered to be almost invariant in the propagation direction (z).
Fig. 3
Fig. 3 Optical setup.
Fig. 4
Fig. 4 (a) 2D and (b) 3D fluorescence intensity distributions of the excited dye molecules in the wedge-waveguide 1.
Fig. 5
Fig. 5 (a) Fluorescence lifetime decay curves of the Rhodamine 6G dye molecules coupled into transverse Anderson localized mode 1, mode 2, and mode 3 in wedge-waveguide 1 and in bulk phenol; PL spectrum of the dye molecules coupled into (b) mode 1, (c) mode 2, and (d) mode 3.
Fig. 6
Fig. 6 Distribution of the fluorescence lifetimes of Rhodamine 6G dye molecules coupled into transverse Anderson localized modes.
Fig. 7
Fig. 7 The numerical electric field intensity distribution profiles of the dye molecules coupled into Anderson localized modes in wedge-waveguide 1; (a)-(d) for different configurations of the air bubbles within waveguiding medium. The emission wavelength of the dipole is taken as 586 nm.
Fig. 8
Fig. 8 (a) The numerical electric field intensity distribution calculated by FDTD method and (b) the experimentally obtained PL spectrum of the Rhodamine 6G dye molecules coupled into Anderson localized modes in wedge-waveguide 2.

Tables (1)

Tables Icon

Table 1 Fluorescence decay parameters of Rhodamine 6G molecules in wedge-type waveguide 1.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F P = 3Q ( λ c /n ) 3 4 π 2 V ,
Q= λ c Δ λ c ,
V= ε( r ) | E( r ) | 2 dV ε m ( r ) | E m ( r ) | 2 ,
Γ Γ 0 = F P Δ λ c 2 4 (λ λ c ) 2 +Δ λ c 2 | E( r ) | 2 | E m | 2 η 2
τ a = i ( A i τ i i A i τ i ) τ i ,
τ b = i A i τ i i A i ,
I= I 1 exp[(t t 0 )/ τ 1 ]+ I 2 exp[(t t 0 )/ τ 2 ]

Metrics