Abstract

We present a general yet simple method for achieving broad-band, high-contrast-ratio, and reversible all-optical diodes. The mechanism is based on the controllable photonic transitions inside a nonlinear nanocavity, triggered by only one pulse. We demonstrate that the interaction between the signal, pump pulse, and the cavity mode plays a crucial role in dynamically controlling the nonreciprocal light transmissions. Using this mechanism, we show that the nonreciprocal light transmission can be controllably reversed without changing the signal light’s wavelength or power, with a broad operation bandwidth over 7.5nm and a transmission contrast rate over 20dB. This approach provides a promising avenue in flexible manipulation of on-chip all-optical signal processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broad-bandwidth, reversible, and high-contrast-ratio optical diode

Chao Li, Min Wang, and Jun-Fang Wu
Opt. Lett. 42(2) 334-337 (2017)

Highly efficient all-optical diode action based on light-tunneling heterostructures

Chunhua Xue, Haitao Jiang, and Hong Chen
Opt. Express 18(7) 7479-7487 (2010)

Nonreciprocal transmission and fast-slow light effects in a cavity optomechanical system

Jun-Hao Liu, Ya-Fei Yu, and Zhi-Ming Zhang
Opt. Express 27(11) 15382-15390 (2019)

References

  • View by:
  • |
  • |
  • |

  1. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
    [Crossref]
  2. T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
    [Crossref]
  3. L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
    [Crossref] [PubMed]
  4. C. Li, M. Wang, and J.-F. Wu, “Broad-bandwidth, reversible, and high-contrast-ratio optical diode,” Opt. Lett. 42(2), 334–337 (2017).
    [Crossref] [PubMed]
  5. Z. Wang, L. Shi, X. Xu, J. Zhang, J. Zhang, and X. Zhang, “Optical nonreciprocity with large bandwidth in asymmetric hybrid slot waveguide coupler,” Opt. Express 23(3), 3690–3698 (2015).
    [Crossref] [PubMed]
  6. Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
    [Crossref] [PubMed]
  7. Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
    [Crossref] [PubMed]
  8. B.-I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 85(20), 205101 (2012).
    [Crossref]
  9. A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
    [Crossref]
  10. J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
    [Crossref] [PubMed]
  11. S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
    [Crossref] [PubMed]
  12. Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, “Optical nonreciprocity in asymmetric optomechanical couplers,” Sci. Rep. 5(1), 8657 (2015).
    [Crossref] [PubMed]
  13. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [Crossref]
  14. H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
    [Crossref] [PubMed]
  15. F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PJ -symmetric nonlinear Fano resonances,” Opt. Express 22(8), 9574–9584 (2014).
    [Crossref] [PubMed]
  16. W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
    [Crossref]
  17. Y. Xu and A. E. Miroshnichenko, “Reconfigurable nonreciprocity with a nonlinear Fano diode,” Phys. Rev. B Condens. Matter Mater. Phys. 89(13), 134306 (2014).
    [Crossref]
  18. X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
    [Crossref]
  19. C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47(13), 133001 (2014).
    [Crossref]
  20. J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
    [Crossref]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
    [Crossref] [PubMed]
  23. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  25. A. Iserles, A First Course in the Numerical Analysis of Differential Equations (Cambridge University, 1996).
  26. C. Li and J.-F. Wu, J “Investigation of the transient Kerr effect in a nonlinear photonic crystal microcavity,” Phys. D: Appl. Phys. 46(15), 155105 (2013).
    [Crossref]
  27. J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photonics J. 5(3), 6100209 (2013).
    [Crossref]
  28. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [Crossref]
  29. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
    [Crossref] [PubMed]

2017 (1)

2015 (2)

2014 (4)

F. Nazari, N. Bender, H. Ramezani, M. K. Moravvej-Farshi, D. N. Christodoulides, and T. Kottos, “Optical isolation via PJ -symmetric nonlinear Fano resonances,” Opt. Express 22(8), 9574–9584 (2014).
[Crossref] [PubMed]

Y. Xu and A. E. Miroshnichenko, “Reconfigurable nonreciprocity with a nonlinear Fano diode,” Phys. Rev. B Condens. Matter Mater. Phys. 89(13), 134306 (2014).
[Crossref]

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47(13), 133001 (2014).
[Crossref]

Y. Zhang, D. Li, C. Zeng, Z. Huang, Y. Wang, Q. Huang, Y. Wu, J. Yu, and J. Xia, “Silicon optical diode based on cascaded photonic crystal cavities,” Opt. Lett. 39(6), 1370–1373 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

C. Li and J.-F. Wu, J “Investigation of the transient Kerr effect in a nonlinear photonic crystal microcavity,” Phys. D: Appl. Phys. 46(15), 155105 (2013).
[Crossref]

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photonics J. 5(3), 6100209 (2013).
[Crossref]

2012 (4)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

B.-I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 85(20), 205101 (2012).
[Crossref]

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
[Crossref]

2011 (1)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

2010 (3)

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

2009 (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref] [PubMed]

2008 (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

2007 (1)

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
[Crossref]

2005 (2)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

2002 (1)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Astar, W.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Bender, N.

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Brasselet, E.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Carter, G. M.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Chen, H.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Christodoulides, D. N.

Cummer, S. A.

B.-I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 85(20), 205101 (2012).
[Crossref]

Dadap, J. I.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Ding, W.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
[Crossref]

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Driscoll, J. B.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Fan, L.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Fan, S.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Fink, Y.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Gong, Q.

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

Green, W. J.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Gu, C.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Guo, X.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Hou, B.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Hu, X.

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

Huang, Q.

Huang, Z.

Hwang, J.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Ibanescu, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Ishikawal, K.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Jin, C.-Y.

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47(13), 133001 (2014).
[Crossref]

Joannopoulos, J. D.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Johnson, S. G.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Kottos, T.

Lai, Y.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Li, C.

C. Li, M. Wang, and J.-F. Wu, “Broad-bandwidth, reversible, and high-contrast-ratio optical diode,” Opt. Lett. 42(2), 334–337 (2017).
[Crossref] [PubMed]

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photonics J. 5(3), 6100209 (2013).
[Crossref]

C. Li and J.-F. Wu, J “Investigation of the transient Kerr effect in a nonlinear photonic crystal microcavity,” Phys. D: Appl. Phys. 46(15), 155105 (2013).
[Crossref]

Li, D.

Li, J.

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Li, Z.

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

Lipson, M.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref] [PubMed]

Lira, H.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Liu, X.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Liu, Y.

Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, “Optical nonreciprocity in asymmetric optomechanical couplers,” Sci. Rep. 5(1), 8657 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
[Crossref]

Manipatruni, S.

S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref] [PubMed]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Miroshnichenko, A. E.

Y. Xu and A. E. Miroshnichenko, “Reconfigurable nonreciprocity with a nonlinear Fano diode,” Phys. Rev. B Condens. Matter Mater. Phys. 89(13), 134306 (2014).
[Crossref]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

Moravvej-Farshi, M. K.

Nazari, F.

Nishimura, S.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Niu, B.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Osgood, R. M.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Park, B.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Popa, B.-I.

B.-I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 85(20), 205101 (2012).
[Crossref]

Qi, M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Qiu, C.-W.

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
[Crossref]

Ram, R. J.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
[Crossref]

Ramezani, H.

Robinson, J. T.

S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref] [PubMed]

Ross, C. A.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

Shen, H.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Shi, L.

Soljacic, M.

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Song, M. H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Takanishi, Y.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Takezoe, H.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Toyooka, T.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Varghese, L. T.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Vlasov, Y. A.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

Wada, O.

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47(13), 133001 (2014).
[Crossref]

Wang, J.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wang, M.

Wang, Y.

Wang, Z.

Weiner, A. M.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Wu, J. W.

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Wu, J.-F.

C. Li, M. Wang, and J.-F. Wu, “Broad-bandwidth, reversible, and high-contrast-ratio optical diode,” Opt. Lett. 42(2), 334–337 (2017).
[Crossref] [PubMed]

C. Li and J.-F. Wu, J “Investigation of the transient Kerr effect in a nonlinear photonic crystal microcavity,” Phys. D: Appl. Phys. 46(15), 155105 (2013).
[Crossref]

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photonics J. 5(3), 6100209 (2013).
[Crossref]

Wu, Y.

Xia, J.

Xin, C.

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

Xu, X.

Xu, Y.

Y. Xu and A. E. Miroshnichenko, “Reconfigurable nonreciprocity with a nonlinear Fano diode,” Phys. Rev. B Condens. Matter Mater. Phys. 89(13), 134306 (2014).
[Crossref]

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Xuan, Y.

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Yu, J.

Yu, Z.

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Zaman, T. R.

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
[Crossref]

Zeng, C.

Zhang, J.

Zhang, X.

Zhang, Y.

Appl. Phys. Lett. (2)

T. R. Zaman, X. Guo, and R. J. Ram, “Faraday rotation in an InP waveguide,” Appl. Phys. Lett. 90(2), 023514 (2007).
[Crossref]

A. E. Miroshnichenko, E. Brasselet, and Y. S. Kivshar, “Reversible optical nonreciprocity in periodic structures with liquid crystals,” Appl. Phys. Lett. 96(6), 063302 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: Experiment and theoretical investigation,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1448–1459 (2010).
[Crossref]

IEEE Photonics J. (1)

J.-F. Wu and C. Li, “Similar role of transient Kerr effect and two-photon absorption in a nonlinear photonic crystal nanocavity,” IEEE Photonics J. 5(3), 6100209 (2013).
[Crossref]

J. Phys. D Appl. Phys. (1)

C.-Y. Jin and O. Wada, “Photonic switching devices based on semiconductor nano-structures,” J. Phys. D Appl. Phys. 47(13), 133001 (2014).
[Crossref]

Nat. Commun. (1)

Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, and H. Chen, “Broadband asymmetric waveguiding of light without polarization limitations,” Nat. Commun. 4(1), 2561 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Hwang, M. H. Song, B. Park, S. Nishimura, T. Toyooka, J. W. Wu, Y. Takanishi, K. Ishikawal, and H. Takezoe, “Electro-tunable optical diode based,” Nat. Mater. 4, 383–387 (2005).
[Crossref] [PubMed]

Nat. Photonics (3)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5(12), 758–762 (2011).
[Crossref]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[Crossref]

Nature (1)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005).
[Crossref] [PubMed]

New J. Phys. (1)

X. Hu, C. Xin, Z. Li, and Q. Gong, “Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons,” New J. Phys. 12(2), 023029 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. D: Appl. Phys. (1)

C. Li and J.-F. Wu, J “Investigation of the transient Kerr effect in a nonlinear photonic crystal microcavity,” Phys. D: Appl. Phys. 46(15), 155105 (2013).
[Crossref]

Phys. Rev. A (1)

W. Ding, B. Luk’yanchuk, and C.-W. Qiu, “Ultrahigh-contrast-ratio silicon Fano diode,” Phys. Rev. A 85(2), 025806 (2012).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

Y. Xu and A. E. Miroshnichenko, “Reconfigurable nonreciprocity with a nonlinear Fano diode,” Phys. Rev. B Condens. Matter Mater. Phys. 89(13), 134306 (2014).
[Crossref]

B.-I. Popa and S. A. Cummer, “Nonreciprocal active metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 85(20), 205101 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66, 055601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

H. Lira, Z. Yu, S. Fan, and M. Lipson, “Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip,” Phys. Rev. Lett. 109(3), 033901 (2012).
[Crossref] [PubMed]

S. Manipatruni, J. T. Robinson, and M. Lipson, “Optical nonreciprocity in optomechanical structures,” Phys. Rev. Lett. 102(21), 213903 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

Z. Wang, L. Shi, Y. Liu, X. Xu, and X. Zhang, “Optical nonreciprocity in asymmetric optomechanical couplers,” Sci. Rep. 5(1), 8657 (2015).
[Crossref] [PubMed]

Science (1)

L. Fan, J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, “An all-silicon passive optical diode,” Science 335(6067), 447–450 (2012).
[Crossref] [PubMed]

Other (4)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).

A. Iserles, A First Course in the Numerical Analysis of Differential Equations (Cambridge University, 1996).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sketch of a PC AOD system composed of a nonlinear nanocavity coupled with two asymmetric WGs. The nonlinear nanocavity (the red circle) is made by polymer rod, which has a linear refractive index n0 = 1.59 and a Kerr nonlinearity coefficient n2 = 1.3×10−3 μm2/W, and all the other rods are made of silicon. ps and pp represent the incident powers of the signal light and the pump pulse, respectively, and td is the delay time of the pump pulse relative to the signal light.
Fig. 2
Fig. 2 Transmission spectra for isolated individual WG1 and WG2 when r0 = 0.2r, 0.3r and 0.5r. The vertical dashed line denotes the location of the resonant frequency at ω0, and the green curve at the bottom is the total transmission spectra for the AOD system in linear case.
Fig. 3
Fig. 3 (a) Time evolutions of the nonlinear transmissions under different pump powers of the control pulse. High state: pp = 222.884W/μm; low state: pp = 222.887W/μm. Inset is the enlarged part of the region inside the dashed box. The other physical parameters used for calculations are: ω0 = 0.3491, γ1 = γ2 = 8.67×10−5, γ0 = 6.69×10−6 (all in units of 2πc/a), p0 = 0.0026W/μm, ps = 0.032W/μm, t0 = 20(a/c), and td = 1000(a/c). These system parameters correspond to the case of r0 = 0.3r, and can be obtained via numerical experiments. The detailed method of calculating p0 can be found in [26,27]. (b) Steady transmission as a function of the pump pulse power.
Fig. 4
Fig. 4 (a) Forward and backward transmission spectra for (a) r0 = 0.2r (p01 > p02) and (b) r0 = 0.3r (p01 = p02). The pink region marked by “I” denotes backward-conduction AOD, while the pale blue region marked by “II” implies reversible AOD. The solid and dash curves represent analytical results from Eq. (2), while the scatted dots are from FDTD simulation. In the theoretical calculations, ω0 = 0.3491(2πc/a) and ps = 0.032W/μm are taken. In addition, for (a): γ1 = 9.31×10−5, γ2 = 1.79×10−4, γ0 = 1.78×10−5 (all in units of 2πc/a), p01 = 0.01W/μm and p02 = 0.0052W/μm; for (b): γ1 = γ2 = 8.67×10−5, γ0 = 6.69×10−6 (all in units of 2πc/a), and p01 = p02 = 0.0026W/μm. In the FDTD simulations, the grid sizes in the horizontal and vertical directions are all chosen to be a/30, and a perfectly matched layer (PML) of 1μm is employed as absorbing boundary. The empty circles and triangles represent a forward conducted AOD, while the solid ones denote a backward AOD. The reversible AOD shown in (b) has a maximum contrast rate Cmax = 112 (over 20dB), with a working bandwidth over 7.5nm.
Fig. 5
Fig. 5 (a) Required td values to achieve high state for forward (red circles) and backward transmissions (blue triangles), with λ = 1570.5nm, ps = 0.032W/μm and pp = 222.53W/μm. Inset shows that the data of the red circles and blue triangles will overlap each other if the data of the red circles are rightward shifted 16(a/c), as denoted by the curved arrows. (b) and (c) are the dynamic evolutions of the transmission rates for td = 1250 (a/c) and td = 1266 (a/c), respectively. These two td values correspond to the points inside the little dashed box in (a). The transmission contrast rates for forward conducted AOD in (b) and backward conducted AOD in (c) are 110 and 112, respectively. (d) Temporal evolutions of the intracavity energy for different td. The horizontal gray dashed line denotes the critical energy value for switching.
Fig. 6
Fig. 6 Steady field patterns of Ez (along the rods direction) for reversible AOD with same wavelength (λ = 1563.2nm), same signal power (ps = 0.032W/μm), and same pump pulse power (pp = 77W/μm), but different pulse delay times. (a) and (b) Forward-conduction AOD: td = 994(a/c). (c) and (d) Backward-conduction AOD: td = 1010(a/c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dA dt =[ j( ω 0 2γ γ out |A | 2 p 0 )γ ]A+( 2 γ in p s + 2 γ 1 p p e (t t d ) 2 / t 0 2 ) e jωt ,
p out =2 γ out |A | 2 ,
T= η ( δ2|A | 2 γ out / p 0 ) 2 +1 ,
p 01 p 02 = γ 2 γ 1 .

Metrics