Abstract

Reconfigurable design is an effective way to achieve multifunctional devices for system integration. Limited by the feeding network for multi-resonators, multimode absorbers with more than four modes are rarely reported. In this paper, a frequency-reconfigurable metamaterial absorber/reflector resonating at 3.05, 4.45 and 5.54 GHz is proposed. Based on a stereoscopic feeding network and a strategic arranged structure with loaded switching diodes, the proposed structure can realize the reconfigurable eight operating modes, including triple-band (111)/dual-band (110, 101, 011)/single-band (100, 010, 001) absorption and reflection (000) without re-optimizing and re-engineering the structure. The simulated results are confirmed by measuring a fabricated prototype. Our design provides a strategy to realize multifunction devices in microwave or even higher frequencies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual and broadband terahertz metamaterial absorber based on a compact resonator structure

Yongzhi Cheng, Haijun Zou, Jiaji Yang, Xuesong Mao, and Rongzhou Gong
Opt. Mater. Express 8(10) 3104-3114 (2018)

Polarization-independent wide-angle triple-band metamaterial absorber

Xiaopeng Shen, Tie Jun Cui, Junming Zhao, Hui Feng Ma, Wei Xiang Jiang, and Hui Li
Opt. Express 19(10) 9401-9407 (2011)

Polarization modulation by tunable electromagnetic metamaterial reflector/absorber

Bo Zhu, Yijun Feng, Junming Zhao, Ci Huang, Zhengbin Wang, and Tian Jiang
Opt. Express 18(22) 23196-23203 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  2. F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
    [Crossref]
  3. R. Xu and Y.-S. Lin, “Characterizations of reconfigurable infrared metamaterial absorbers,” Opt. Lett. 43(19), 4783–4786 (2018).
    [Crossref] [PubMed]
  4. X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
    [Crossref]
  5. W. Wang, F. P. Yan, S. Y. Tan, H. Zhou, and Y. F. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photon. Res. 5(6), 571–577 (2017).
    [Crossref]
  6. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
    [Crossref]
  7. H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
    [Crossref] [PubMed]
  8. J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
    [Crossref]
  9. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  10. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
    [Crossref]
  11. J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
    [Crossref] [PubMed]
  12. F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  13. W. Xue, X. Chen, Y. Peng, and R. Yang, “Grating-type mid-infrared light absorber based on silicon carbide material,” Opt. Express 24(20), 22596–22605 (2016).
    [Crossref] [PubMed]
  14. Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
    [Crossref]
  15. G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38(3), 272–274 (2013).
    [Crossref] [PubMed]
  16. R. Yahiaoui and H. H. Ouslimani, “Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber,” J. Appl. Phys. 122(9), 093104 (2017).
    [Crossref]
  17. H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
    [Crossref] [PubMed]
  18. L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
    [Crossref] [PubMed]
  19. Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
    [Crossref] [PubMed]
  20. B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
    [Crossref] [PubMed]
  21. W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
    [Crossref]
  22. H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep. 8(1), 9226 (2018).
    [Crossref] [PubMed]
  23. H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
    [Crossref] [PubMed]
  24. S. Ghosh and K. V. Srivastava, “Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique,” IEEE Trans. Antenn. Propag. 64(8), 3665–3670 (2016).
    [Crossref]
  25. S. Ghosh and K. V. Srivastava, “Polarization-insensitive dual-band switchable absorber with independent switching,” IEEE Antennas Wirel. Propag. Lett. 16, 1687–1690 (2017).
    [Crossref]
  26. P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
    [Crossref]
  27. Online Available: https://www.nxp.com/docs/en/data-sheet/BAP70-03.pdf .
  28. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
    [Crossref]
  29. J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
    [Crossref]
  30. J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
    [Crossref]
  31. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  32. A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
    [Crossref]
  33. S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
    [Crossref]
  34. H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
    [Crossref]
  35. http://www.eccosorb.com/Collateral/Documents/English-US/nrl_arch_reflectivity_testing.pdf .
  36. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
    [Crossref] [PubMed]

2018 (5)

R. Xu and Y.-S. Lin, “Characterizations of reconfigurable infrared metamaterial absorbers,” Opt. Lett. 43(19), 4783–4786 (2018).
[Crossref] [PubMed]

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep. 8(1), 9226 (2018).
[Crossref] [PubMed]

2017 (7)

R. Yahiaoui and H. H. Ouslimani, “Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber,” J. Appl. Phys. 122(9), 093104 (2017).
[Crossref]

S. Ghosh and K. V. Srivastava, “Polarization-insensitive dual-band switchable absorber with independent switching,” IEEE Antennas Wirel. Propag. Lett. 16, 1687–1690 (2017).
[Crossref]

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

Y. T. Zhao, B. Wu, B. J. Huang, and Q. Cheng, “Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface,” Opt. Express 25(7), 7161–7169 (2017).
[Crossref] [PubMed]

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

W. Wang, F. P. Yan, S. Y. Tan, H. Zhou, and Y. F. Hou, “Ultrasensitive terahertz metamaterial sensor based on vertical split ring resonators,” Photon. Res. 5(6), 571–577 (2017).
[Crossref]

2016 (5)

W. Xue, X. Chen, Y. Peng, and R. Yang, “Grating-type mid-infrared light absorber based on silicon carbide material,” Opt. Express 24(20), 22596–22605 (2016).
[Crossref] [PubMed]

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
[Crossref]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

S. Ghosh and K. V. Srivastava, “Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique,” IEEE Trans. Antenn. Propag. 64(8), 3665–3670 (2016).
[Crossref]

2015 (2)

H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
[Crossref] [PubMed]

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

2014 (1)

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

2013 (6)

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

G. Dayal and S. A. Ramakrishna, “Metamaterial saturable absorber mirror,” Opt. Lett. 38(3), 272–274 (2013).
[Crossref] [PubMed]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

2012 (1)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2010 (2)

B. Zhu, Y. Feng, J. Zhao, C. Huang, Z. Wang, and T. Jiang, “Polarization modulation by tunable electromagnetic metamaterial reflector/absorber,” Opt. Express 18(22), 23196–23203 (2010).
[Crossref] [PubMed]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

2009 (1)

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2006 (1)

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

2005 (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Alvarez, H. F.

H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
[Crossref]

Baek, C.-W.

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

Bhattacharyya, S.

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Cai, G.

Cai, Y. J.

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Chen, L. Y.

Chen, X.

Chen, X. W.

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

Chen, Y.

Cheng, Q.

Cheng, Y. Z.

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Choi, E. H.

Costa, F.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Cui, Y. X.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dayal, G.

de Cos Gómez, M. E.

H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
[Crossref] [PubMed]

Ding, F.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Feng, Y.

Fernández Álvarez, H.

H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
[Crossref] [PubMed]

Ge, X. C.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Genovesi, S.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

Ghosh, S.

S. Ghosh and K. V. Srivastava, “Polarization-insensitive dual-band switchable absorber with independent switching,” IEEE Antennas Wirel. Propag. Lett. 16, 1687–1690 (2017).
[Crossref]

S. Ghosh and K. V. Srivastava, “Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique,” IEEE Trans. Antenn. Propag. 64(8), 3665–3670 (2016).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Gomez, M. E. D. C.

H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
[Crossref]

Gong, R. Z.

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

He, S. L.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Ho, C. P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Hou, Y. F.

Huang, B. J.

Huang, C.

Jang, W. H.

Jeong, H.

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep. 8(1), 9226 (2018).
[Crossref] [PubMed]

Jiang, T.

Jin, Y.

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Kim, H. K.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Kim, K. W.

Kim, S. H.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Koschny, T.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

Kropelnicki, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Kwong, D. L.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Las-Heras, F.

H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
[Crossref]

H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
[Crossref] [PubMed]

Lee, C. K.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Lee, D.

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Lee, Y.

Li, A. B.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Li, D. L.

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Li, Y. B.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Lim, S.

H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep. 8(1), 9226 (2018).
[Crossref] [PubMed]

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Lin, T.

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Lin, Y.-S.

Liu, N.

Liu, Q. H.

L. Ye, Y. Chen, G. Cai, N. Liu, J. Zhu, Z. Song, and Q. H. Liu, “Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range,” Opt. Express 25(10), 11223–11232 (2017).
[Crossref] [PubMed]

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Liu, X.

Long, J.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Luo, Y.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Ma, R.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

Manara, G.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Monorchio, A.

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

Moon, Y.-H.

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

Ouslimani, H. H.

R. Yahiaoui and H. H. Ouslimani, “Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber,” J. Appl. Phys. 122(9), 093104 (2017).
[Crossref]

Padilla, W. J.

X. Liu and W. J. Padilla, “Reconfigurable room temperature metamaterial infrared emitter,” Optica 4(4), 430–433 (2017).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Park, J. W.

Park, J.-H.

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Peng, Y.

Pitchappa, P.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Ramakrishna, S. A.

Rhee, J. Y.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sievenpiper, D. F.

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

Singh, N.

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

Song, Z.

Sonkusale, S.

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Soukoulis, C. M.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

Srivastava, K. V.

S. Ghosh and K. V. Srivastava, “Polarization-insensitive dual-band switchable absorber with independent switching,” IEEE Antennas Wirel. Propag. Lett. 16, 1687–1690 (2017).
[Crossref]

S. Ghosh and K. V. Srivastava, “Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique,” IEEE Trans. Antenn. Propag. 64(8), 3665–3670 (2016).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Tan, S. Y.

Tian, J.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

Tian, J. P.

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

Tuong, P. V.

Tuttle, G.

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

Wang, B.

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Wang, J.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

Wang, J. Y.

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

Wang, W.

Wang, Z.

Wu, B.

Xu, J.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

Xu, R.

Xu, W. R.

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

Xue, W.

Yahiaoui, R.

R. Yahiaoui and H. H. Ouslimani, “Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber,” J. Appl. Phys. 122(9), 093104 (2017).
[Crossref]

Yan, F. P.

Yan, S.

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Yang, R.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

W. Xue, X. Chen, Y. Peng, and R. Yang, “Grating-type mid-infrared light absorber based on silicon carbide material,” Opt. Express 24(20), 22596–22605 (2016).
[Crossref] [PubMed]

Yang, R. C.

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

Ye, L.

Zhang, L.

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhang, W.

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

Zhang, W. M.

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

Zhao, J.

Zhao, J. C.

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Zhao, Y. T.

Zhou, H.

Zhou, J. F.

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

Zhu, B.

Zhu, J.

Zhu, J. F.

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

Appl. Phys. Lett. (3)

F. Ding, Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

W. R. Xu and S. Sonkusale, “Microwave diode switchable metamaterial reflector/absorber,” Appl. Phys. Lett. 103(3), 031902 (2013).
[Crossref]

P. Pitchappa, C. P. Ho, P. Kropelnicki, N. Singh, D. L. Kwong, and C. K. Lee, “Micro-electro-mechanically switchable near infrared complementary metamaterial absorber,” Appl. Phys. Lett. 104(20), 201114 (2014).
[Crossref]

EPL (1)

J. F. Zhu, D. L. Li, S. Yan, Y. J. Cai, Q. H. Liu, and T. Lin, “Tunable microwave metamaterial absorbers using varactor-loaded split loops,” EPL 112(5), 54002 (2015).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (2)

S. Ghosh and K. V. Srivastava, “Polarization-insensitive dual-band switchable absorber with independent switching,” IEEE Antennas Wirel. Propag. Lett. 16, 1687–1690 (2017).
[Crossref]

J. Y. Wang, R. C. Yang, J. P. Tian, X. W. Chen, and W. M. Zhang, “A dual band absorber with wide-angle polarization insensitive,” IEEE Antennas Wirel. Propag. Lett. 17(7), 1242–1246 (2018).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Trans. Antenn. Propag. 58(5), 1551–1558 (2010).
[Crossref]

S. Ghosh and K. V. Srivastava, “Polarization-insensitive single- and broadband switchable absorber/reflector and its realization using a novel biasing technique,” IEEE Trans. Antenn. Propag. 64(8), 3665–3670 (2016).
[Crossref]

F. Costa, S. Genovesi, A. Monorchio, and G. Manara, “A circuit-based model for the interpretation of perfect metamaterial absorbers,” IEEE Trans. Antenn. Propag. 61(3), 1201–1209 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors, and enhanced non-linear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

A. B. Li, S. H. Kim, Y. Luo, Y. B. Li, J. Long, and D. F. Sievenpiper, “High-power transistor-based tunable and switchable metasurface absorber,” IEEE Trans. Microw. Theory Tech. 65(8), 2810–2818 (2017).
[Crossref]

IEEE. Antenn. Propag. M. (1)

H. F. Alvarez, M. E. D. C. Gomez, and F. Las-Heras, “Angular stability of metasurfaces: challenges regarding reflectivity measurements,” IEEE. Antenn. Propag. M. 58(5), 74–81 (2016).
[Crossref]

J. Appl. Phys. (3)

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

R. Yahiaoui and H. H. Ouslimani, “Broadband polarization-independent wide-angle and reconfigurable phase transition hybrid metamaterial absorber,” J. Appl. Phys. 122(9), 093104 (2017).
[Crossref]

S. Bhattacharyya, S. Ghosh, and K. V. Srivastava, “Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band,” J. Appl. Phys. 114(9), 094514 (2013).
[Crossref]

Materials (Basel) (2)

J. Wang, R. Yang, J. Xu, J. Tian, R. Ma, and W. Zhang, “Polarization-controlled and flexible single-/penta-band metamaterial absorber,” Materials (Basel) 11(9), 01619 (2018).
[Crossref] [PubMed]

H. Fernández Álvarez, M. E. de Cos Gómez, and F. Las-Heras, “A thin c-band polarization and incidence angle-insensitive metamaterial perfect absorber,” Materials (Basel) 8(4), 1666–1681 (2015).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

Y. Z. Cheng, R. Z. Gong, and J. C. Zhao, “A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves,” Opt. Mater. 62, 28–33 (2016).
[Crossref]

Optica (1)

Photon. Res. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

J. F. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B Condens. Matter Mater. Phys. 73(4), 041101 (2006).
[Crossref]

B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B Condens. Matter Mater. Phys. 80(3), 033108 (2009).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71, 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (2)

H. Jeong and S. Lim, “Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane,” Sci. Rep. 8(1), 9226 (2018).
[Crossref] [PubMed]

H. K. Kim, D. Lee, and S. Lim, “Wideband-switchable metamaterial absorber using injected liquid metal,” Sci. Rep. 6(1), 31823 (2016).
[Crossref] [PubMed]

Sensors (Basel) (1)

H. Jeong, J.-H. Park, Y.-H. Moon, C.-W. Baek, and S. Lim, “Thermal frequency reconfigurable electromagnetic absorber using phase change material,” Sensors (Basel) 18(10), 3506 (2018).
[Crossref] [PubMed]

Other (2)

Online Available: https://www.nxp.com/docs/en/data-sheet/BAP70-03.pdf .

http://www.eccosorb.com/Collateral/Documents/English-US/nrl_arch_reflectivity_testing.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of 3D periodic structure; (b) top view and (c) side view of an enlarged unit cell; (d) photos of top patterned resonators of the fabricated prototype; (e) bottom feeding plate.
Fig. 2
Fig. 2 Equivalent circuit model of the proposed reconfigurable structure.
Fig. 3
Fig. 3 Simulated and measured absorptivity for eight modes. (a) 111; (b) 011; (c) 101; (d) 110; (e) 001; (f) 010; (g) 100; (h) 000. Here “1” and “0” denote the perfect absorption and reflection, respectively.
Fig. 4
Fig. 4 The normalized impedance for (a) 111, (b) 100, (c) 010 and (d) 001, respectively.
Fig. 5
Fig. 5 Surface current distributions on top pattern and backplane at 3.05, 4.45 and 5.54 GHz for the eight absorption/reflection modes (a) 111, (b) 011, (c) 101, (d) 110, (e) 001, (f) 010, (g) 100 (h) 000, respectively.
Fig. 6
Fig. 6 Magnetic field distributions at 3.05, 4.45 and 5.54 GHz for the eight absorption/reflection modes (a) 111, (b) 011, (c) 101, (d) 110, (e) 001, (f) 010, (g) 100 (h) 000, respectively.
Fig. 7
Fig. 7 Simulated absorptivity (a) for different polarization angles; (b) and (c) for TE and TM waves under different incident angles, respectively. (d)-(f) are measured results corresponding to (a)-(c), respectively.

Tables (1)

Tables Icon

Table 1 Absorption/reflection modes under different biasing states of the diodes

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Z in = Z AA' ||j Z t1 tanβ t 1 ,
1 Z AA' = i=1 3 1 R i +jω L i + Z diode ,
Z diode ={ R on +jω L d jω L d +1/ jω C off ,
f r = 1 2π ( L i +L)C ,(i=1,2,3),

Metrics