Abstract

A novel scheme for the expansion and phase correlation of a wavelength tunable gain-switched optical frequency comb (OFC) is presented. This method entails firstly combining two gain-switched OFCs and expanding them using a phase modulator. Subsequently, the phase correlation between all the comb lines is induced through four-wave mixing (FWM) in a semiconductor optical amplifier (SOA). In this article, the generation of 42 highly correlated comb lines separated by 6.25 GHz, with an optical carrier to noise ratio (OCNR) of more than 50 dB, is experimentally demonstrated. In addition, the wavelength tunability of the scheme, over 30 nm within the C band, is shown. Finally, the degree of phase correlation between comb lines is verified through RF beat tone linewidth measurements. The results show a five orders of magnitude reduction in the beat tone linewidth, due to FWM in an SOA.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
40nm wavelength tunable gain-switched optical comb source

Rui Zhou, Sylwester Latkowski, John O’Carroll, Richard Phelan, Liam P. Barry, and Prince Anandarajah
Opt. Express 19(26) B415-B420 (2011)

Software reconfigurable highly flexible gain switched optical frequency comb source

M. Deseada Gutierrez Pascual, Rui Zhou, Frank Smyth, Prince M. Anandarajah, and Liam P. Barry
Opt. Express 23(18) 23225-23235 (2015)

InP photonic integrated externally injected gain switched optical frequency comb

M. Deseada Gutierrez Pascual, Vidak Vujicic, Jules Braddell, Frank Smyth, Prince M. Anandarajah, and Liam P. Barry
Opt. Lett. 42(3) 555-558 (2017)

References

  • View by:
  • |
  • |
  • |

  1. CiscoVisual Networking Index white paper “The Zettabyte Era: Trends and Analysis,” (2017).
  2. G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
    [Crossref]
  3. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  4. N. Alic, E. Myslivets, E. Temprana, B. P. Kuo, and S. Radic, “Nonlinearity Cancellation in Fiber Optic Links Based on Frequency Referenced Carriers,” J. Lightwave Technol. 32(15), 2690–2698 (2014).
    [Crossref]
  5. S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
    [Crossref]
  6. T. Habruseva, S. O’Donoghue, N. Rebrova, F. Kéfélian, S. P. Hegarty, and G. Huyet, “Optical linewidth of a passively mode-locked semiconductor laser,” Opt. Lett. 34(21), 3307–3309 (2009).
    [Crossref] [PubMed]
  7. M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).
  8. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
    [Crossref] [PubMed]
  9. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
    [Crossref]
  10. P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.
  11. R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.
  12. R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
    [Crossref] [PubMed]
  13. M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.
  14. M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.
  15. International Telecommunications Union-Telecommunication Standardization Sector, ITU-T Recommendation G.694.1: Spectral grids for WDM applications: DWDM frequency grid (UTI-T, 2012), pp. 1–16.
  16. R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
    [Crossref] [PubMed]
  17. S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
    [Crossref]
  18. O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).
  19. G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5(1), 147–159 (1988).
    [Crossref]
  20. G. P. Agrawal, “Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning,” Appl. Phys. Lett. 51(5), 302–304 (1987).
    [Crossref]
  21. J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
    [Crossref]
  22. K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in semiconductor lasers,” IEE Proc. J. Optoelectronics 138(2), 91–96 (1991).
  23. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20(5), 5291–5302 (2012).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

2012 (1)

2011 (3)

2009 (1)

2008 (2)

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

2007 (1)

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

2000 (2)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).

1997 (1)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

1991 (1)

K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in semiconductor lasers,” IEE Proc. J. Optoelectronics 138(2), 91–96 (1991).

1988 (1)

1987 (1)

G. P. Agrawal, “Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning,” Appl. Phys. Lett. 51(5), 302–304 (1987).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers,” J. Opt. Soc. Am. B 5(1), 147–159 (1988).
[Crossref]

G. P. Agrawal, “Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning,” Appl. Phys. Lett. 51(5), 302–304 (1987).
[Crossref]

Alic, N.

Anandarajah, P.

Anandarajah, P. M.

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Araya, K.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Arcizet, O.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Aso, O.

O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).

Barry, L.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Barry, L. P.

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Barry, L.P.

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

Bosco, G.

Carena, A.

Curri, V.

De Leenheer, M.

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Del’Haye, P.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Diez, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Duan, G. H.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

Forghieri, F.

Fujiwara, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Gallion, P.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

Habruseva, T.

Hegarty, S. P.

Holzwarth, R.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Huyet, G.

Huynh, T. N.

Kani, J.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Kéfélian, F.

Kelly, B.

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

Kikuchi, K.

Kindt, S.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Koltchanov, I.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Kuo, B. P.

Landais, P.

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

Latkowski, S.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Ludwig, R.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Maher, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

Maldonado-basilio, R.

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

Morea, A.

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Mukherjee, B.

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Murdoch, S. G.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Myslivets, E.

Namiki, S.

O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).

O’Carroll, J.

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

O’Donoghue, S.

O’Gorman, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Obermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Pascual, M. D. G.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

Petermann, K.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Phelan, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

Poggiolini, P.

Radic, S.

Rebrova, N.

Renaudier, J.

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

Schliesser, A.

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Schmidt, C.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Shao, T.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

Shore, K. A.

K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in semiconductor lasers,” IEE Proc. J. Optoelectronics 138(2), 91–96 (1991).

Smyth, F.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

Surre, F.

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

Suzuki, H.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Tadakuma, M.

O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).

Temprana, E.

Teshima, M.

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Vujicic, V.

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

Weber, H. G.

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

Xu, Y. Q.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

Yee, W. M.

K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in semiconductor lasers,” IEE Proc. J. Optoelectronics 138(2), 91–96 (1991).

Zhang, G.

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

Zhou, R.

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22(7), 8120–8125 (2014).
[Crossref] [PubMed]

R. Zhou, S. Latkowski, J. O’Carroll, R. Phelan, L. P. Barry, and P. Anandarajah, “40 nm wavelength tunable gain-switched optical comb source,” Opt. Express 19(26), B415–B420 (2011).
[Crossref] [PubMed]

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

Appl. Phys. Lett. (2)

S. Latkowski, F. Surre, R. Maldonado-basilio, and P. Landais, “Investigation on the origin of terahertz waves generated by dc-biased multimode semiconductor lasers at room temperature,” Appl. Phys. Lett. 93(24), 241110 (2008).
[Crossref]

G. P. Agrawal, “Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning,” Appl. Phys. Lett. 51(5), 302–304 (1987).
[Crossref]

Electronics Lett. (1)

M. Fujiwara, J. Kani, H. Suzuki, K. Araya, and M. Teshima, “Flattened optical multicarrier generation of 12.5 GHz spaced 256 channels based on sinusoidal amplitude and phase hybrid modulation,” Electronics Lett. 37(15), 967–968 (2000).

Furukawa Rev. (1)

O. Aso, M. Tadakuma, and S. Namiki, “Four-wave mixing in optical fibers and its applications,” Furukawa Rev. 19(19), 63–68 (2000).

IEE Proc. J. Optoelectronics (1)

K. A. Shore and W. M. Yee, “Theory of self-locking FM operation in semiconductor lasers,” IEE Proc. J. Optoelectronics 138(2), 91–96 (1991).

IEEE Comm. Surv. and Tutor. (1)

G. Zhang, M. De Leenheer, A. Morea, and B. Mukherjee, “A survey on OFDM-based elastic core optical networking,” IEEE Comm. Surv. and Tutor. 15(1), 65–87 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Renaudier, G. H. Duan, P. Landais, and P. Gallion, “Phase correlation and linewidth reduction of 40 GHz self-pulsation in distributed Bragg reflector semiconductor lasers,” IEEE J. Quantum Electron. 43(2), 147–156 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Diez, C. Schmidt, R. Ludwig, H. G. Weber, K. Obermann, S. Kindt, I. Koltchanov, and K. Petermann, “Four-wave mixing in semiconductor optical amplifiers for frequency conversion and fast optical switching,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1131–1145 (1997).
[Crossref]

IEEE Photonics J. (1)

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of coherent multicarrier signals by gain switching of discrete mode lasers,” IEEE Photonics J. 3(1), 112–122 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, “Full stabilization of a microresonator-based optical frequency comb,” Phys. Rev. Lett. 101(5), 053903 (2008).
[Crossref] [PubMed]

Other (6)

P. M. Anandarajah, R. Zhou, R. Maher, M. D. G. Pascual, F. Smyth, V. Vujicic, and L.P. Barry, “Flexible Optical Comb Source for Super Channel Systems,” in 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optical Engineers Conference (IEEE, 2013), paper OTh3I.8.

R. Zhou, P. M. Anandarajah, M. D. G. Pascual, J. O’Carroll, R. Phelan, B. Kelly, and L. P. Barry,“Monolithically integrated 2-section lasers for injection locked gain switched comb generation,” in Optical Fiber Communication Conference and Exposition (Optical Society of America, 2014), paper Th3A.3.

M. D. G. Pascual, R. Zhou, F. Smyth, T. Shao, P. M. Anandarajah, and L. Barry, “Dual mode injection locking of a Fabry-Pérot laser for tunable broadband gain switched comb generation,” in 2015 European Conference on Optical Communication (IEEE, 2015), pp. 1–3.

M. D. G. Pascual, P. M. Anandarajah, R. Zhou, F. Smyth, S. Latkowski, and L. P. Barry, “Cascaded Fabry-Perot lasers for coherent expansion of wavelength tunable gain switched comb,” in 2014 European Conference on Optical Communication (IEEE, 2014), pp. 1–3.

International Telecommunications Union-Telecommunication Standardization Sector, ITU-T Recommendation G.694.1: Spectral grids for WDM applications: DWDM frequency grid (UTI-T, 2012), pp. 1–16.

CiscoVisual Networking Index white paper “The Zettabyte Era: Trends and Analysis,” (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Block diagram of the proposed comb expansion and phase correlation technique; (b) illustration of the spectral output at each stage: (i) individual OFCs, (ii) PM output, (iii) SOA output.
Fig. 2
Fig. 2 Principle of phase transfer through FWM in an SOA. Here, φ1, φ2, φ3 are the phases of three comb lines, respectively and frf denotes the FSR of the comb. The dotted lines represent newly FWM generated spectral components.
Fig. 3
Fig. 3 Schematic of the experimental setup of the proposed wavelength tunable gain-switched comb expansion and phase correlation technique. Here, dotted lines and solid lines represent the RF and optical paths, respectively.
Fig. 4
Fig. 4 Optical spectra: (a) free-running FP1 (blue) and FP2 (red), (b) externally injected FP lasers depicting single mode operation.
Fig. 5
Fig. 5 Optical spectra – (a) EI-GSL OFCs where 2 OFCs are overlaid to show the amount of the overlap between the combs, (b) combined EI-GSL OFCs, (c) PM output, (d) SOA output. The pair of comb lines chosen for the RF beat tone measurements are denoted in green and blue.
Fig. 6
Fig. 6 RF beat tone measurement setup.
Fig. 7
Fig. 7 Electrical spectra of RF beat tone of (a) OFC1 and OFC2 (input OFCs), (b) PM expanded OFC (uncorrelated), and (c) 3 dB linewidths of RF beat tones for different frequency separation: OFC1 (green star), OFC2 (red triangle), SOA output (blue circles) in Hz scale and PM output (black square) in kHz scale.
Fig. 8
Fig. 8 Optical spectra of the SOA output of the individual expanded OFCs: (a) OFC1 (blue) and (b) OFC2 (red). The combined expanded SOA output (grey, Fig. 5(c)) is superimposed for comparison.
Fig. 9
Fig. 9 Electrical spectra for RF beat tone of two comb lines: uncorrelated (SOA input, black trace), correlated (SOA output, blue trace). Inset: zoom in on the RF beat tone of the individual input OFCs and the expanded + phase correlated OFC at the SOA output.
Fig. 10
Fig. 10 Optical spectra demonstrating wavelength tunability of the proposed configuration: (a) combined EI-GSL OFCs, (b) PM output, (c) SOA expansion at 1560nm; (d) combined EI-GSL OFCs, (e) PM output and (f) SOA expansion at 1531nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i (z,t)= A i e ( ω i t k i z φ i (t)) u
δ i cdm = 1 2 (1jα) G i m=1 M [Δ N m E im + Δ N m * E i+m ]
Δ N m =( N 0 N ¯ ) k=m+1 M E k E km * P s 1+ P t P s jm f rf τ e
δ 1 cdm = 1 2 (1jα) G 1 ( N 0 N ¯ )[ | E 2 | 2 E 1 + E 3 * E 2 2 P s + P t j f rf τ e P s ]
δ 3 cdm = 1 2 (1jα) G 3 ( N 0 N ¯ )[ | E 2 | 2 E 3 + E 1 * E 2 2 P s + P t j f rf τ e P s ]

Metrics