Abstract

We present the design, fabrication and characterization of LNOI fiber-to-chip inverse tapers for efficient monolithic edge coupling. The etching characteristics of various LNOI crystal cuts are investigated for the realization of butt-coupling devices. We experimentally demonstrate that the crystal cut limits the performance of mode matching tapers studied in this work. We report a butt-coupling loss of 2.5±0.5 dB/facet across the C/L-band and 6 dB/facet (at 1550 nm) by implementing 200 nm tip mode matching tapers in +Z-cut LNOI and X-cut MgO:LNOI, respectively. We anticipate that these results will provide insight into the nanostructuring of LNOI and into the further development of efficient butt-coupling in this platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High coupling efficiency grating couplers on lithium niobate on insulator

Inna Krasnokutska, Robert J. Chapman, Jean-Luc J. Tambasco, and Alberto Peruzzo
Opt. Express 27(13) 17681-17685 (2019)

Improving coupling efficiency of fiber-waveguide coupling with a double-tip coupler

S. H. Tao, Junfeng Song, Q. Fang, M. B. Yu, G. Q. Lo, and D. L. Kwong
Opt. Express 16(25) 20803-20808 (2008)

High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides

Jian Jian, Pengfei Xu, Hui Chen, Mingbo He, Zeru Wu, Lidan Zhou, Lin Liu, Chunchuan Yang, and Siyuan Yu
Opt. Express 26(23) 29651-29658 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  2. A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
    [Crossref] [PubMed]
  3. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref] [PubMed]
  4. Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26, 16315–16322 (2018).
    [Crossref] [PubMed]
  5. P. Günter and J.-P. Huignard, Photorefractive effects and materials(Springer Berlin Heidelberg, 1988), pp. 7–73.
  6. J. Sun and C. Xu, “466 mw green light generation using annealed proton-exchanged periodically poled MgO:LiNbO3 ridge waveguides,” Opt. Lett. 37, 2028–2030 (2012).
    [Crossref] [PubMed]
  7. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  8. D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
    [Crossref]
  9. R. Orobtchouk, A. Layadi, H. Gualous, D. Pascal, A. Koster, and S. Laval, “High-efficiency light coupling in a submicrometric silicon-on-insulator waveguide,” Appl. Opt. 39, 5773–5777 (2000).
    [Crossref]
  10. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlstrom, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328–333 (2008).
    [Crossref] [PubMed]
  11. W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
    [Crossref] [PubMed]
  12. J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.
  13. L. W. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
    [Crossref] [PubMed]
  14. M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. O.-M. nux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
    [Crossref] [PubMed]
  15. Y. Maegami, R. Takei, E. Omoda, T. Amano, M. Okano, M. Mori, T. Kamei, and Y. Sakakibara, “Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling,” Opt. Express 23, 21287–21295 (2015).
    [Crossref] [PubMed]
  16. J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
    [Crossref]
  17. Z. Chen, R. Peng, Y. Wang, H. Zhu, and H. Hu, “Grating coupler on lithium niobate thin film waveguide with a metal bottom reflector,” Opt. Mater. Express 7, 4010–4017 (2017).
    [Crossref]
  18. J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
    [Crossref] [PubMed]
  19. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).
    [Crossref]
  20. M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
    [Crossref]
  21. I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
    [Crossref] [PubMed]
  22. I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” arXiv preprint arXiv:1807.06531 (2018).
  23. C. Chen, Foundations for Guided-Wave Optics(Wiley, 2006).
    [Crossref]

2018 (6)

2017 (2)

2016 (1)

2015 (1)

2014 (3)

2012 (1)

2010 (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

2008 (1)

2006 (1)

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

2005 (1)

2000 (1)

Amano, T.

Ayre, M.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Benedikovic, D.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Bienstman, P.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Bogaerts, W.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Camacho-González, G. F.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Cardenas, J.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Cassan, E.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Cheben, P.

Chen, C.

C. Chen, Foundations for Guided-Wave Optics(Wiley, 2006).
[Crossref]

Chen, H.

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Chen, Z.

Cheng, R.

Chu, T.

Dado, M.

Desiatov, B.

Ding, L.

Fathpour, S.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Fejer, M. M.

Franck, T.

Fu, Y.

Giannone, D.

Griol, A.

Gualous, H.

Günter, P.

P. Günter and J.-P. Huignard, Photorefractive effects and materials(Springer Berlin Heidelberg, 1988), pp. 7–73.

Gylfason, K. B.

Halir, R.

He, M.

He, Y.

Hill, D.

Hodge, D.

Hsu, P.-K.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Hu, H.

Huang, Y.

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive effects and materials(Springer Berlin Heidelberg, 1988), pp. 7–73.

Hvam, J. M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Jankowski, M.

Janz, S.

Jayatilleka, H.

Jian, J.

Kamei, T.

Kazmierczak, A.

Keil, U.

Koster, A.

Krasnokutska, I.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” arXiv preprint arXiv:1807.06531 (2018).

Laere, F. V.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Langrock, C.

Laval, S.

Layadi, A.

Li, M.

Li, X.

Liang, H.

Liao, L. W.

Lin, Q.

Lin, Y.-H.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Lipson, M.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Liu, A.

Liu, L.

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref] [PubMed]

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Lo, G.-Q.

Loncar, M.

Luke, K.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Luo, L.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Luo, R.

Maegami, Y.

Maire, G.

Malinowski, M.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Marandi, A.

Marris-Morini, D.

Mercante, A. J.

Mori, M.

Morse, M.

Morton, P. A.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Novak, S.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

nux, A. O.-M.

Okano, M.

Omoda, E.

Orobtchouk, R.

Ou, H.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Papes, M.

Pascal, D.

Peng, R.

Peruzzo, A.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” arXiv preprint arXiv:1807.06531 (2018).

Poitras, C. B.

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Pond, J.

Poon, J. K. S.

Prather, D. W.

Pu, M.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Qiao, P.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Richardson, K. A.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Rubin, D.

Sacher, W. D.

Sakakibara, Y.

Samara-Rubio, D.

Sanchez, B.

Sattler, G.

Schmid, J. H.

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Shi, S.

Sohlstrom, H.

Sun, J.

Taillaert, D.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Takei, R.

Tambasco, J.-L. J.

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” arXiv preprint arXiv:1807.06531 (2018).

Tang, W.

Taylor, B. J. F.

Thourhout, D. V.

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Tremblay, J.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Vašinek, V.

Vivien, L.

Wang, C.

Wang, Y.

Wangüemert-Pérez, G.

Weikle, R. M.

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Wu, M. C.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

Wu, Z.

Xie, L.

Xu, C.

Xu, D.-X.

Xu, P.

Yang, C.

Yao, P.

Ye, T.

Ye, W. N.

Yu, S.

Yvind, K.

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Zhang, M.

Zhou, L.

Zhu, H.

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

J. Cardenas, C. B. Poitras, K. Luke, L. Luo, P. A. Morton, and M. Lipson, “High coupling efficiency etched facet tapers in silicon waveguides,” IEEE Photonics Technol. Lett. 26, 2380–2382 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45, 6071 (2006).
[Crossref]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Pu, L. Liu, H. Ou, K. Yvind, and J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283, 3678–3682 (2010).
[Crossref]

Opt. Express (9)

I. Krasnokutska, J.-L. J. Tambasco, X. Li, and A. Peruzzo, “Ultra-low loss photonic circuits in lithium niobate on insulator,” Opt. Express 26, 897–904 (2018).
[Crossref] [PubMed]

Y. He, H. Liang, R. Luo, M. Li, and Q. Lin, “Dispersion engineered high quality lithium niobate microring resonators,” Opt. Express 26, 16315–16322 (2018).
[Crossref] [PubMed]

A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, and D. W. Prather, “Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth,” Opt. Express 26, 14810–14816 (2018).
[Crossref] [PubMed]

G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlstrom, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328–333 (2008).
[Crossref] [PubMed]

W. D. Sacher, Y. Huang, L. Ding, B. J. F. Taylor, H. Jayatilleka, G.-Q. Lo, and J. K. S. Poon, “Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler,” Opt. Express 22, 10938–10947 (2014).
[Crossref] [PubMed]

J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, and S. Yu, “High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides,” Opt. Express 26, 29651–29658 (2018).
[Crossref] [PubMed]

L. W. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005).
[Crossref] [PubMed]

M. Papes, P. Cheben, D. Benedikovic, J. H. Schmid, J. Pond, R. Halir, A. O.-M. nux, G. Wangüemert-Pérez, W. N. Ye, D.-X. Xu, S. Janz, M. Dado, and V. Vašinek, “Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides,” Opt. Express 24, 5026–5038 (2016).
[Crossref] [PubMed]

Y. Maegami, R. Takei, E. Omoda, T. Amano, M. Okano, M. Mori, T. Kamei, and Y. Sakakibara, “Spot-size converter with a SiO2 spacer layer between tapered Si and SiON waveguides for fiber-to-chip coupling,” Opt. Express 23, 21287–21295 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (2)

Photon. Res. (1)

Other (4)

P. Günter and J.-P. Huignard, Photorefractive effects and materials(Springer Berlin Heidelberg, 1988), pp. 7–73.

J. Tremblay, Y.-H. Lin, P.-K. Hsu, M. Malinowski, S. Novak, P. Qiao, G. F. Camacho-González, C. J. Chang-Hasnain, K. A. Richardson, S. Fathpour, and M. C. Wu, “Large bandwidth silicon nitride spot-size converter for efficient supercontinuum coupling to chalcogenide waveguide,” Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2017), paper SF1J.7.

I. Krasnokutska, J.-L. J. Tambasco, and A. Peruzzo, “Large free spectral range microring resonators in lithium niobate on insulator,” arXiv preprint arXiv:1807.06531 (2018).

C. Chen, Foundations for Guided-Wave Optics(Wiley, 2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Calculated minimum feature size versus sidewall angle for several etch heights. The minimum feature size that can be achieved for +Z-cut LNOI and X-cut MgO:LNOI are shown as inset. The schematic representation of minimum feature size definition is shown on the side of the picture. A thin LN film (blue) is seated atop SiO2 (pink), where f is the width of the minimum achievable feature and is dependent on the sidewall angle, θ, and the etch depth, H.
Fig. 2
Fig. 2 Design of inverse taper: (a) schematic representations of light coupling into the waveguide via an inverse taper; (b) simulated dependence of the overall transmission through waveguide via taper length for different taper dimensions; (c) simulated mode profiles for tapers with base widths of 200 and 300 nm for X-cut MgO:LNOI and Z-cut LNOI illustrating the increase in MFD; (d) the simulated mode profiles for the untapered waveguides in X-cut MgO:LNOI and Z-cut LNOI discussed in this paper; (e) simulated coupling efficiencies (with lensed and SMF28 fibers) for tapers with different tip widths in X-cut MgO:LNOI (red curves) and Z-cut LNOI (blue curves).
Fig. 3
Fig. 3 Scanning electron microscope pictures of an etched single mode X-cut MgO:LNOI waveguide: (a) waveguide sidewall imaged at a 40° tilt; (b) cross-section taken using FIB slicing and SEM imaging; the yellow false coloring highlights the waveguide outline. Optical characterization of fabricated X-cut MgO:LNOI mode-matching tapers and single mode waveguide: (c) Fabry-Perot measurements of propagation loss performed on 200 nm inverse taper (the input laser power is 0.5 mW); (d) measured optical power distribution at the output of the untapered waveguide; (e) measured optical power distribution at the output of 200 nm base width taper and (f) <100 nm base width taper illustrating the increase in MFD, where black lines schematically show the fabricated waveguide dimensions.
Fig. 4
Fig. 4 (a) Scanning electron microscope of an etched taper in Z-cut LNOI tip; the false blue-coloring highlights the base and top edges of the taper tip. (b) Measured optical power distribution at the output of 200 nm taper, where black lines schematically show the fabricated waveguide dimensions. (c) Measured fiber-chip-fiber transmission spectrum for the taper with 200 nm tip width and the 1 μm wide waveguide.

Tables (1)

Tables Icon

Table 1 Etching Characteristics of Different LNOI Types.

Metrics