Abstract

Wavelength conversion using all-optical phase modulation in a fiber driven by two pump waves is investigated. The operation features are analyzed using an all-optical phase modulation model with two parallel-/cross-polarized pump waves to generate a phase-preserving copy of the optical signal at an exact frequency up-/down-shifted by the two-pump detuning. The conversion efficiency is experimentally verified using a 300-m highly-nonlinear fiber. The results agree well with a theoretical prediction. The conversion bandwidth over 4 THz is achieved and error-free wavelength conversion for a 32-GBd polarization-division multiplexed 16QAM signal is demonstrated. The technique’s applicability to a large-capacity wavelength-division multiplexed signals is also discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detailed Investigation of the Pump Phase Noise Tolerance for Wavelength Conversion of 16-QAM Signals Using FWM

Sepideh T. Naimi, Seán P. Ó Dúill, and Liam P. Barry
J. Opt. Commun. Netw. 6(9) 793-800 (2014)

Experimental demonstration of both inverted and non-inverted wavelength conversion based on transient cross phase modulation of SOA

Songnian Fu, Jianji Dong, P. Shum, Liren Zhang, Xinliang Zhang, and Dexiu Huang
Opt. Express 14(17) 7587-7593 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
    [Crossref]
  2. C. Schmidt-Langhorst, R. Elschner, I. Sackey, T. Kato, T. Tanimura, S. Watanabe, T. Hoshida, and C. Schubert, “Advanced polarization-insensitive optical signal processing using orthogonal signal and idler fields,” in Advanced Photonics Congress 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper PTu1D.3.
    [Crossref]
  3. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
    [Crossref]
  4. S. Watanabe, S. Takeda, and T. Chikama, “Interband wavelength conversion of 320 Gb/s (32x10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” in Proceedings of 24th European Conference on Optical Communications (ECOC’98), 2, pp. 85–86.
  5. G.-W. Lu, T. Sakamoto, and T. Kawanishi, “Wavelength conversion of optical 64QAM through FWM in HNLF and its performance optimization by constellation monitoring,” Opt. Express 22(1), 15–22 (2014).
    [Crossref] [PubMed]
  6. T. Inoue, K. Tanizawa, and S. Namiki, “Guard-band-less and polarization-insensitive tunable wavelength converter for phase-modulated signals: demonstration and signal quality analyses,” J. Lightwave Technol. 32(10), 1981–1990 (2014).
    [Crossref]
  7. H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Wavelength translation of dual-polarization phase-modulated Nyquist OTDM at Terabit/s,” J. Lightwave Technol. 34(2), 633–642 (2016).
    [Crossref]
  8. S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
    [Crossref]
  9. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
    [Crossref]
  10. I. Sackey, A. Gajda, A. Peczek, E. Liebig, L. Zimmermann, K. Petermann, and C. Schubert, “1.024 Tb/s wavelength conversion in a silicon waveguide with reverse-biased p-i-n junction,” Opt. Express 25(18), 21229–21240 (2017).
    [Crossref] [PubMed]
  11. F. Da Ros, M. P. Yankov, E. P. da Silva, M. Pu, L. Ottaviano, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high-efficiency AlGaAs-on-insulator-based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
    [Crossref]
  12. S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
    [Crossref]
  13. R. Elschner, T. Richter, C. Schmidt-Langhorst, T. Kato, T. Tanimura, S. Watanabe, and C. Schubert, “Distributed aggregation of spectrally efficient single- and dual-polarization super-channels by optical frequency conversion in fiber,” J. Lightwave Technol. 34(2), 618–625 (2016).
    [Crossref]
  14. T. Kato, S. Watanabe, T. Tanimura, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, and T. Hoshida, “THz-range optical frequency shifter for dual polarization WDM signals using frequency conversion in fiber,” J. Lightwave Technol. 35(6), 1267–1273 (2017).
    [Crossref]
  15. T. Kato, S. Watanabe, T. Tanimura, R. Elschner, C. Schmidt-Langhorst, C. Schubert, and T. Hoshida, “Fiber-optic frequency shifting of THz-range WDM signal using orthogonal pump-signal polarization configuration,” in Optical Fiber Communication Conference 2018, OSA Technical Digest (online) (Optical Society of America, 2018), paper M3E.3.
    [Crossref]
  16. T. Kato, S. Watanabe, T. Tanimura, C. Schmidt-Langhorst, I. Sackey, R. Elschner, C. Schubert, and T. Hoshida, “Any-to-any signal frequency shifting across entire C-band using continuously tunable optical frequency shifter,” in Proceedings of 44th European Conference on Optical Communications (ECOC2018), paper Mo3H.1.
  17. C. McKinstrie, S. Radic, and M. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12(21), 5037–5066 (2004).
    [Crossref] [PubMed]
  18. K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28(4), 883–894 (1992).
    [Crossref]
  19. C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
    [Crossref]
  20. A. Lorences-Riesgo, L. Liu, S. L. I. Olsson, R. Malik, A. Kumpera, C. Lundström, S. Radic, M. Karlsson, and P. A. Andrekson, “Quadrature demultiplexing using a degenerate vector parametric amplifier,” Opt. Express 22(24), 29424–29434 (2014).
    [Crossref] [PubMed]
  21. I. Sackey, C. Schmidt-Langhorst, R. Elschner, T. Kato, T. Tanimura, S. Watanabe, T. Hoshida, and C. Schubert, “Waveband-shift-free optical phase conjugator for spectrally efficient fiber nonlinearity mitigation,” J. Lightwave Technol. 36(6), 1309–1317 (2018).
    [Crossref]
  22. K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20(5), 5291–5302 (2012).
    [Crossref] [PubMed]
  23. M. E. Marhic, F. S. Yang, L. G. Kazovsky, and Y. Park, “Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra,” Opt. Lett. 21(17), 1354–1356 (1996).
    [Crossref] [PubMed]
  24. M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
    [Crossref]
  25. C. J. McKinstrie and S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

2016 (2)

2014 (3)

2012 (2)

K. Kikuchi, “Characterization of semiconductor-laser phase noise and estimation of bit-error rate performance with low-speed offline digital coherent receivers,” Opt. Express 20(5), 5291–5302 (2012).
[Crossref] [PubMed]

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

2010 (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

2009 (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

2006 (1)

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

2004 (1)

2003 (1)

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

2002 (1)

C. J. McKinstrie and S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[Crossref] [PubMed]

1996 (2)

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

1992 (1)

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28(4), 883–894 (1992).
[Crossref]

Andrekson, P. A.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Chikama, T.

S. Watanabe, S. Takeda, and T. Chikama, “Interband wavelength conversion of 320 Gb/s (32x10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” in Proceedings of 24th European Conference on Optical Communications (ECOC’98), 2, pp. 85–86.

Da Ros, F.

da Silva, E. P.

Elschner, R.

Forchhammer, S.

Gajda, A.

Galili, M.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Hoshida, T.

Hu, H.

Inoue, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28(4), 883–894 (1992).
[Crossref]

Inoue, T.

Karlsson, M.

Kato, T.

Kawanishi, T.

Kazovsky, L. G.

Kikuchi, K.

Kumpera, A.

Kurosu, T.

Liebig, E.

Liu, L.

Lorences-Riesgo, A.

Lu, G.-W.

Ludwig, R.

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

Lundström, C.

Malik, R.

Marhic, M. E.

McKinstrie, C.

McKinstrie, C. J.

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

C. J. McKinstrie and S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[Crossref] [PubMed]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Namiki, S.

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

Okabe, R.

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Olsson, S. L. I.

Onishi, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Ottaviano, L.

Oxenløwe, L. K.

Park, Y.

Peczek, A.

Petermann, K.

Pu, M.

Radic, S.

A. Lorences-Riesgo, L. Liu, S. L. I. Olsson, R. Malik, A. Kumpera, C. Lundström, S. Radic, M. Karlsson, and P. A. Andrekson, “Quadrature demultiplexing using a degenerate vector parametric amplifier,” Opt. Express 22(24), 29424–29434 (2014).
[Crossref] [PubMed]

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

C. McKinstrie, S. Radic, and M. Raymer, “Quantum noise properties of parametric amplifiers driven by two pump waves,” Opt. Express 12(21), 5037–5066 (2004).
[Crossref] [PubMed]

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

C. J. McKinstrie and S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[Crossref] [PubMed]

Raymer, M.

Raymer, M. G.

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

Richter, T.

Sackey, I.

Sakamoto, T.

Schmidt-Langhorst, C.

Schubert, C.

Semenova, E.

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Takeda, S.

S. Watanabe, S. Takeda, and T. Chikama, “Interband wavelength conversion of 320 Gb/s (32x10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” in Proceedings of 24th European Conference on Optical Communications (ECOC’98), 2, pp. 85–86.

Tan, H. N.

Tanimura, T.

Tanizawa, K.

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

Vasilyev, M. V.

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

Watanabe, S.

Yang, F. S.

Yankov, M. P.

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

Yvind, K.

Zibar, D.

Zimmermann, L.

IEEE J. Quantum Electron. (2)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46(8), 1206–1213 (2010).
[Crossref]

K. Inoue, “Polarization effect on four-wave mixing efficiency in a single-mode fiber,” IEEE J. Quantum Electron. 28(4), 883–894 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Watanabe, T. Kato, R. Okabe, R. Elschner, R. Ludwig, and C. Schubert, “All-optical data frequency multiplexing on single-wavelength carrier light by sequentially provided cross-phase modulation in fiber,” IEEE J. Sel. Top. Quantum Electron. 18(2), 577–584 (2012).
[Crossref]

M. Hirano, T. Nakanishi, T. Okuno, and M. Onishi, “Silica-based highly nonlinear fibers and their application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

C. J. McKinstrie and S. Radic, and A. R. Chraplyvy, “Parametric amplifiers driven by two pump waves,” IEEE J. Sel. Top. Quantum Electron. 8(3), 538–547 (2002).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photonics Technol. Lett. 5(8), 947–949 (1993).
[Crossref]

J. Lightwave Technol. (7)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” J. Lightwave Technol. 14(6), 955–966 (1996).
[Crossref]

T. Inoue, K. Tanizawa, and S. Namiki, “Guard-band-less and polarization-insensitive tunable wavelength converter for phase-modulated signals: demonstration and signal quality analyses,” J. Lightwave Technol. 32(10), 1981–1990 (2014).
[Crossref]

H. N. Tan, T. Inoue, T. Kurosu, and S. Namiki, “Wavelength translation of dual-polarization phase-modulated Nyquist OTDM at Terabit/s,” J. Lightwave Technol. 34(2), 633–642 (2016).
[Crossref]

R. Elschner, T. Richter, C. Schmidt-Langhorst, T. Kato, T. Tanimura, S. Watanabe, and C. Schubert, “Distributed aggregation of spectrally efficient single- and dual-polarization super-channels by optical frequency conversion in fiber,” J. Lightwave Technol. 34(2), 618–625 (2016).
[Crossref]

T. Kato, S. Watanabe, T. Tanimura, T. Richter, R. Elschner, C. Schmidt-Langhorst, C. Schubert, and T. Hoshida, “THz-range optical frequency shifter for dual polarization WDM signals using frequency conversion in fiber,” J. Lightwave Technol. 35(6), 1267–1273 (2017).
[Crossref]

F. Da Ros, M. P. Yankov, E. P. da Silva, M. Pu, L. Ottaviano, H. Hu, E. Semenova, S. Forchhammer, D. Zibar, M. Galili, K. Yvind, and L. K. Oxenløwe, “Characterization and optimization of a high-efficiency AlGaAs-on-insulator-based wavelength converter for 64- and 256-QAM signals,” J. Lightwave Technol. 35(17), 3750–3757 (2017).
[Crossref]

I. Sackey, C. Schmidt-Langhorst, R. Elschner, T. Kato, T. Tanimura, S. Watanabe, T. Hoshida, and C. Schubert, “Waveband-shift-free optical phase conjugator for spectrally efficient fiber nonlinearity mitigation,” J. Lightwave Technol. 36(6), 1309–1317 (2018).
[Crossref]

Opt. Commun. (1)

C. J. McKinstrie, M. G. Raymer, S. Radic, and M. V. Vasilyev, “Quantum mechanics of phase-sensitive amplification in a fiber,” Opt. Commun. 257(1), 146–163 (2006).
[Crossref]

Opt. Express (5)

Opt. Fiber Technol. (1)

S. Radic and C. J. McKinstrie, “Two-pump fiber parametric amplifiers,” Opt. Fiber Technol. 9(1), 7–23 (2003).
[Crossref]

Opt. Lett. (1)

Other (4)

C. Schmidt-Langhorst, R. Elschner, I. Sackey, T. Kato, T. Tanimura, S. Watanabe, T. Hoshida, and C. Schubert, “Advanced polarization-insensitive optical signal processing using orthogonal signal and idler fields,” in Advanced Photonics Congress 2017, OSA Technical Digest (online) (Optical Society of America, 2017), paper PTu1D.3.
[Crossref]

S. Watanabe, S. Takeda, and T. Chikama, “Interband wavelength conversion of 320 Gb/s (32x10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer,” in Proceedings of 24th European Conference on Optical Communications (ECOC’98), 2, pp. 85–86.

T. Kato, S. Watanabe, T. Tanimura, R. Elschner, C. Schmidt-Langhorst, C. Schubert, and T. Hoshida, “Fiber-optic frequency shifting of THz-range WDM signal using orthogonal pump-signal polarization configuration,” in Optical Fiber Communication Conference 2018, OSA Technical Digest (online) (Optical Society of America, 2018), paper M3E.3.
[Crossref]

T. Kato, S. Watanabe, T. Tanimura, C. Schmidt-Langhorst, I. Sackey, R. Elschner, C. Schubert, and T. Hoshida, “Any-to-any signal frequency shifting across entire C-band using continuously tunable optical frequency shifter,” in Proceedings of 44th European Conference on Optical Communications (ECOC2018), paper Mo3H.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Phase modulation by XPM in NLF for wavelength conversion. Insets show power spectra.
Fig. 2
Fig. 2 Typical configuration of wavelength conversion by XPM with two optical pump waves. The polarization states of interacting waves are set either as two parallel-polarized pumps being (a) parallel to the signal and (b) orthogonal to the signal, or as two cross-polarized pumps (c) for higher-frequency shift (left) and lower-frequency shift (right).
Fig. 3
Fig. 3 Wavelength conversion by two-pump XPM in which the original signal frequency was set between the two pump waves. The polarization states of the interacting waves are set as those shown in Fig. 2; parallel-polarized pump waves being (a) parallel to the signal and (b) orthogonal to the signal, and cross-polarized pump waves (c) for higher-frequency shift (left) and lower-frequency shift (right).
Fig. 4
Fig. 4 Experimental setup to investigate performance of two-pump-wave XPM WC. VOA: variable optical attenuator; OF: optical filter and; WSS: wavelength selective switch.
Fig. 5
Fig. 5 Optical spectra for polarization diagrams of Fig. 2(a)–2(c) at frequency shift ΔF = ± 0.1 THz using 300-m long HNLF with ν0 = 192.4 THz. Original signal frequency was νS = 193.3 THz, and frequencies of two pump waves were ν1 = 191.5 THz and ν2 = ν1 + ΔF. The input powers were PS = 0 dBm and PP = + 17 dBm. Res.: 12.5 GHz.
Fig. 6
Fig. 6 Dependence of conversion efficiency on input pump power Pp at input signal power PS of 0 dBm into 300-m HNLF with γ ∼15 W−1km−1. Solid, dash-dotted, and dashed lines show results calculated with Eqs. (8), (9) and (10), respectively.
Fig. 7
Fig. 7 Dependence of conversion-efficiency degradation on input PS at input PP = + 17 dBm into 300-m HNLF with γ ∼15 W−1km−1. Solid curve in bottom figure shows results calculated for case (c) with Eq. (10).
Fig. 8
Fig. 8 Optical spectra of 50-MHz phase-modulated pump wave E1 (a), wavelength-converted signal with unadjusted relative phase of two pump waves for SBS suppression (b) and with adjusted relative phase of two pumps (c).
Fig. 9
Fig. 9 Frequency allocation of two-pump XPM WC using two cross-polarized pump waves for optimum phase matching: for higher frequency shift (left) and lower frequency shift (right).
Fig. 10
Fig. 10 Conversion efficiency dependence on frequency shift ΔF for two-pump XPM WC using 300-m long HNLF with ν0 = 192.4 THz. Frequency of two pump waves were ν1 = ν2− ΔF with ν2 = 191.5 THz, and frequency shift was measured from original optical signal frequency at νS = 193.3 THz. Input powers were PS = 0 and PP = + 17 dBm.
Fig. 11
Fig. 11 Experimental setup of wavelength conversion for 32-GBd PDM-16QAM signal using two-pump XPM WC in polarization-diversity loop configuration. Inset shows typical received optical spectrum of −2-THz-shifted signal. Res.: 150 MHz. VOA: variable optical attenuator and; WSS: wavelength selective switch.
Fig. 12
Fig. 12 Bit error ratio characteristics (a) for three-types of polarization configurations at frequency shift ΔF = −2, −1, −0.1, 0.1 and 1 THz, corresponding constellations for ΔF = −2 THz with fine timing adjustment of two pump waves (b) and without timing adjustment (c). Original signal frequency was νS = 193.3 THz and frequency of two pump waves were ν1 = ν2−ΔF with ν2 = 191.5 THz. The input powers into the HNLF were set to PS = 0 dBm and PP = + 17 dBm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E S in (t)= A S (t)cos[ ω S t+ Φ S (t)],
E S out (t)= A S (t)cos[ ω S t+ Φ S (t)+θ(t)],
θ(t)=βsinΩt,
E S out (t)= A S (t) n= + J n (β)cos[( ω S +nΩ)t+ Φ S (t)] ,
E S out (t)= A S (t) J 0 (β)cos[ ω S t+ Φ S (t)]+ A S (t) J ±1 (β)cos[( ω S ±Ω)t+ Φ S (t)].
E 2 out (t)= A 2 J 0 (β')cos ω 2 t+ A 2 J ± (β')cos[( ω 2 ±Ω')t± Φ S (t)],
E 2 (+1) (t)= A 2 J +1 (β')cos{[ ω S +( ω 2 ω 1 )]t+ Φ S (t)}.
η a = J ±1 (β) 2 ,
η b = J ±1 (β/2) 2 .
η c = P P J +1 (β') 2 / P S ,

Metrics