Abstract

The era of flexible optoelectronics demands development of wearable and bendable structures, foldable touch screens, paper-like displays, and curved and flexible solid-state lighting devices. Here, we demonstrate the fabrication of highly flexible light valves using polymer-dispersed liquid crystal (PDLC) and TiO2/Ag/TiO2 transparent conductive films. TiO2/Ag/TiO2 multilayers were prepared by magnetron sputtering technique on polyethylene terephthalate (PET) substrates at room temperature. By keeping the equivalent TiO2 layers and varying the deposition time of the Ag layer, proper metal nanograins on TiO2 planar plane were formed, providing the best tradeoff between the transmittance, sheet resistance and bending ability. The results are validated by numerical simulations that suggest the best match between the deposition time and individual layer thickness. Based on the performed characteristics of TiO2/Ag/TiO2/PET structures, several flexible light valves are fabricated and characterized. The sheet resistance values of TiO2/Ag/TiO2/PET remain unchanged over 1000 bending cycles. The measured driving voltage and response time values open great potential of TiO2/Ag/TiO2/PET for integration into next-generation ITO-free flexible and stretchable devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate

Yanhua Liu, Su Shen, Jin Hu, and Linsen Chen
Opt. Express 24(22) 25774-25784 (2016)

Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications

Hamideh Kermani, Hamid Reza Fallah, Morteza Hajimahmoodzadeh, and Seyed Vahid Tabatabaei
Appl. Opt. 52(4) 780-785 (2013)

Ar plasma irradiation improved optical and electrical properties of TiO2/Ag/TiO2 multilayer thin film

Yingcui Fang, Jinjun He, Kang Zhang, Chuanyun Xiao, Bing Zhang, Jie Shen, Haihong Niu, Rong Yan, and Junling Chen
Opt. Lett. 40(23) 5455-5458 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
    [Crossref]
  2. F. Bloisi, L. Rosario, M. Vicari, and L. Nasti, “Liquid crystal polymer composite materials for LCDs,” in Handbook of Visual Display Technology (Springer, 2016), pp. 2223–2250.
  3. J. Yun, “Ultrathin metal films for transparent electrodes of flexible optoelectronics devices,” Adv. Funct. Mater. 27(18), 1606641 (2017).
    [Crossref]
  4. L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
    [Crossref]
  5. S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
    [Crossref]
  6. S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
    [Crossref]
  7. P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley Interscience, 2010).
  8. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  9. J. Linnet, A. R. Walther, C. Wolff, O. Albreksten, N. A. Mortensen, and J. Kjelstrup-Hansen, “Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films,” Opt. Mater. Express 8(7), 1733–1746 (2018).
    [Crossref]
  10. ITO Replacement: Non-ITO Transparent Conductor Technologies, Supply Chain and Market Forecast (2017), https://www.cdp.net/en/research/global-reports/global-supply-chain-report-2017 .
  11. D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
    [Crossref]
  12. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
    [Crossref]
  13. D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
    [Crossref]
  14. A. Dhar and T. L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit,” J. Appl. Phys. 112(10), 103113 (2012).
    [Crossref]
  15. M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
    [Crossref]
  16. Nanomaterials and nanotechnology for advanced photovoltaics, https://cordis.europa.eu/project/rcn/97983/reporting/en
  17. H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
    [Crossref]
  18. J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
    [Crossref]
  19. Ch. Loka and K.-S. Lee, “Preparation of TiO 2 /Ag/TiO 2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film,” Appl. Surf. Sci. 415, 35–42 (2017).
    [Crossref]
  20. A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
    [Crossref]
  21. Z. Zhao and T. L. Alford, “The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit,” Sol. Energy Mater. Sol. Cells 157, 599–603 (2016).
    [Crossref]
  22. L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
    [Crossref]
  23. J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
    [Crossref]
  24. J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
    [Crossref]
  25. W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
    [Crossref]
  26. A. Dhar and T. L. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
    [Crossref]
  27. M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
    [Crossref]
  28. H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
    [Crossref]
  29. I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
    [Crossref]
  30. V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.
  31. H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
    [Crossref]
  32. I. C. Khoo, Liquid Crystals Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  33. RefractiveIndex.INFO website, https://refractiveindex.info/
  34. Z. Knittl, Optics of Thin Films (Wiley, 1976).

2018 (3)

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

J. Linnet, A. R. Walther, C. Wolff, O. Albreksten, N. A. Mortensen, and J. Kjelstrup-Hansen, “Transparent and conductive electrodes by large-scale nano-structuring of noble metal thin-films,” Opt. Mater. Express 8(7), 1733–1746 (2018).
[Crossref]

2017 (3)

J. Yun, “Ultrathin metal films for transparent electrodes of flexible optoelectronics devices,” Adv. Funct. Mater. 27(18), 1606641 (2017).
[Crossref]

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

Ch. Loka and K.-S. Lee, “Preparation of TiO 2 /Ag/TiO 2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film,” Appl. Surf. Sci. 415, 35–42 (2017).
[Crossref]

2016 (6)

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Z. Zhao and T. L. Alford, “The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit,” Sol. Energy Mater. Sol. Cells 157, 599–603 (2016).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
[Crossref]

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

2015 (5)

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
[Crossref]

W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

2014 (2)

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

2013 (1)

A. Dhar and T. L. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

2012 (2)

A. Dhar and T. L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit,” J. Appl. Phys. 112(10), 103113 (2012).
[Crossref]

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

2011 (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

2007 (1)

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

2006 (1)

D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
[Crossref]

2005 (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Addou, M.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Albreksten, O.

Alford, T. L.

Z. Zhao and T. L. Alford, “The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit,” Sol. Energy Mater. Sol. Cells 157, 599–603 (2016).
[Crossref]

A. Dhar and T. L. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

A. Dhar and T. L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit,” J. Appl. Phys. 112(10), 103113 (2012).
[Crossref]

Bae, D.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

Baek, J. M.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Barakel, D.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Barkat, L.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Beloborodov, I.

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

Bernede, J. C.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Bineva, I.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

Bou, A.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Cattin, L.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Chalh, M.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Choi, M. K.

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

Choi, Y.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

Dhar, A.

A. Dhar and T. L. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

A. Dhar and T. L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit,” J. Appl. Phys. 112(10), 103113 (2012).
[Crossref]

Dikov, H.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

Dong, H.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Efetov, K.

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

Gancheva, V.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Grancharov, G.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Hegde, G.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Heo, J.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Hsiao, Y. J.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Huang, J. L.

D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
[Crossref]

Huh, J. W.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

Hyeon, T.

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

Ivanova, T.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

Jeong, H. L. S.

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Ji, L. W.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Ji, S. M.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

Jin, Y.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Khelil, A.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Kim, D. H.

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
[Crossref]

Kim, D.-H.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Kim, J.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Kim, J. H.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
[Crossref]

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Kim, J.-H.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

Kim, S.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Kim, S.-K.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Kim, S.-W.

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Kim, W.

W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Kjelstrup-Hansen, J.

Kolev, D.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Komitov, L.

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Lare, Y.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Lazarova, E.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Lee, H.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Lee, H.-K.

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Lee, K.-S.

Ch. Loka and K.-S. Lee, “Preparation of TiO 2 /Ag/TiO 2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film,” Appl. Surf. Sci. 415, 35–42 (2017).
[Crossref]

Li, L.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Lin, S. M.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Lin, S. Y.

D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
[Crossref]

Linnet, J.

Loka, Ch.

Ch. Loka and K.-S. Lee, “Preparation of TiO 2 /Ag/TiO 2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film,” Appl. Surf. Sci. 415, 35–42 (2017).
[Crossref]

Lopatin, A.

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

Lucas, B.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Makha, M.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Mokreva, P.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Morsli, M.

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Mortensen, N. A.

Na, J.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Na, J.-Y.

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Oh, S. W.

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Peres, L.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Popkirov, G.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Ricci, M.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Sahu, D. R.

D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
[Crossref]

Sendova-Vassileva, M.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Seong, T.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Seong, T. Y.

J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
[Crossref]

Seong, T.-Y.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Shih, W. S.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Stavreva, G.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

Stavrov, V.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

Thoulon, P. Y.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Tomerov, E.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

Torchio, P.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Tsocheva, D.

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

Vedraine, S.

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Vinokur, V.

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

Vitanov, P.

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

Walther, A. R.

Water, W.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Wolff, C.

Xu, D.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Yang, J.

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

Yoo, Y.

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

Yoo, Y.-Z.

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

Yoon, T. H.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

Young, S. J.

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

Yu, B. H.

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

Yu, S.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Yun, J.

J. Yun, “Ultrathin metal films for transparent electrodes of flexible optoelectronics devices,” Adv. Funct. Mater. 27(18), 1606641 (2017).
[Crossref]

Zhang, W.

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Zhao, Z.

Z. Zhao and T. L. Alford, “The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit,” Sol. Energy Mater. Sol. Cells 157, 599–603 (2016).
[Crossref]

Adv. Funct. Mater. (1)

J. Yun, “Ultrathin metal films for transparent electrodes of flexible optoelectronics devices,” Adv. Funct. Mater. 27(18), 1606641 (2017).
[Crossref]

APL Mater. (1)

A. Dhar and T. L. Alford, “High quality transparent TiO2/Ag/TiO2 composite electrode films deposited on flexible substrate at room temperature by sputtering,” APL Mater. 1(1), 012102 (2013).
[Crossref]

Appl. Phys. Lett. (1)

M. Makha, L. Cattin, Y. Lare, L. Barkat, M. Morsli, M. Addou, A. Khelil, and J. C. Bernede, “MoO3/Ag/MoO3 anode in organic photovoltaic cells: Influence of the presence of a CuI buffer layer between the anode and the electron donor,” Appl. Phys. Lett. 101(23), 233307 (2012).
[Crossref]

Appl. Surf. Sci. (2)

D. R. Sahu, S. Y. Lin, and J. L. Huang, “ZnO/Ag/ZnO multilayer films for the application of a very low resistance transparent electrode,” Appl. Surf. Sci. 252(20), 7509–7514 (2006).
[Crossref]

Ch. Loka and K.-S. Lee, “Preparation of TiO 2 /Ag/TiO 2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film,” Appl. Surf. Sci. 415, 35–42 (2017).
[Crossref]

Ceram. Int. (3)

J.-H. Kim, D.-H. Kim, S.-K. Kim, D. Bae, Y.-Z. Yoo, and T.-Y. Seong, “Control of refractive index by annealing to achieve high figure of merit for TiO2/Ag/TiO2 multilayer films,” Ceram. Int. 42(12), 14071–14076 (2016).
[Crossref]

J. Kim, H. Lee, J. Na, S. Kim, Y. Yoo, and T. Seong, “Dependence of optical and electrical properties on Ag thickness in TiO2/Ag/TiO2 multilayer films for photovoltaic devices,” Ceram. Int. 41(6), 8059–8063 (2015).
[Crossref]

J. H. Kim, D. H. Kim, and T. Y. Seong, “Realization of highly transparent and low resistance TiO2/Ag/TiO2 conducting electrode for optoelectronic devices,” Ceram. Int. 41(2), 3064–3068 (2015).
[Crossref]

Dyes Pigm. (1)

S. W. Oh, J. M. Baek, J. Heo, and T. H. Yoon, “Dye-doped cholesteric liquid crystal light shutter with a polymer-dispersed liquid crystal film,” Dyes Pigm. 134, 36–40 (2016).
[Crossref]

IEEE Sens. J. (1)

L. W. Ji, Y. J. Hsiao, S. J. Young, W. S. Shih, W. Water, and S. M. Lin, “High-Efficient Ultraviolet Photodetectors Based on TiO2/Ag/TiO2 Multilayer Films,” IEEE Sens. J. 15(2), 762–765 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Dhar and T. L. Alford, “Optimization of Nb2O5/Ag/Nb2O5 multilayers as transparent composite electrode on flexible substrate with high figure of merit,” J. Appl. Phys. 112(10), 103113 (2012).
[Crossref]

J. Mater. Res. (2)

D.-H. Kim, J. H. Kim, H.-K. Lee, J.-Y. Na, S.-K. Kim, H. L. S. Jeong, S.-W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

W. Kim, Y.-Z. Yoo, and T.-Y. Seong, “Flexible and transparent TiO2/Ag/ITO multilayer electrodes on PET substrates for organic photonic devices,” J. Mater. Res. 30(10), 1593–1598 (2015).
[Crossref]

J. Phys. Conf. Ser. (4)

H. Dikov, P. Vitanov, T. Ivanova, V. Stavrov, E. Tomerov, G. Stavreva, and I. Bineva, “Optical and electrical properties of TiO2/Pt/TiO2 nanolaminate structures,” J. Phys. Conf. Ser. 992(1), 012033 (2018).
[Crossref]

M. Sendova-Vassileva, H. Dikov, G. Popkirov, E. Lazarova, V. Gancheva, G. Grancharov, D. Tsocheva, P. Mokreva, and P. Vitanov, “Transparent back contacts for P3HT:PCBM bulk heterojunction solar cells,” J. Phys. Conf. Ser. 514, 012018 (2014).
[Crossref]

H. Dikov, T. Ivanova, and P. Vitanov, “Oxide/metal/oxide nanolaminate structures for application of transparent electrodes,” J. Phys. Conf. Ser. 764, 012021 (2016).
[Crossref]

H. Dikov, P. Vitanov, T. Ivanova, and V. Stavrov, “Optical and electrical properties of nanolaminate dielectric structures,” J. Phys. Conf. Ser. 700, 012054 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

L. Komitov, G. Hegde, and D. Kolev, “Fast liquid crystal light shutter,” J. Phys. D Appl. Phys. 44(44), 442002 (2011).
[Crossref]

Liq. Cryst. (1)

S. M. Ji, J. W. Huh, J. H. Kim, Y. Choi, B. H. Yu, and T. H. Yoon, “Fabrication of flexible light shutter using liquid crystals with polymer structure,” Liq. Cryst. 44(9), 1429–1435 (2017).
[Crossref]

npj Flexible Electr. (1)

M. K. Choi, J. Yang, T. Hyeon, and D. H. Kim, “Flexible quantum dot light-emitting diodes for next-generation displays,” npj Flexible Electr. 2(1), 10 (2018).
[Crossref]

Opt. Mater. Express (1)

Rev. Mod. Phys. (1)

I. Beloborodov, A. Lopatin, V. Vinokur, and K. Efetov, “Granular electronic systems,” Rev. Mod. Phys. 79(2), 469–518 (2007).
[Crossref]

RSC Advances (1)

A. Bou, M. Chalh, S. Vedraine, B. Lucas, D. Barakel, L. Peres, P. Y. Thoulon, M. Ricci, and P. Torchio, “Optical role of the thin metal layer in a TiOx/Ag/TiOx transparent and conductive electrode for organic solar cells,” RSC Advances 6(109), 108034 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Z. Zhao and T. L. Alford, “The optimal TiO2/Ag/TiO2 electrode for organic solar cell application with high device-specific Haacke figure of merit,” Sol. Energy Mater. Sol. Cells 157, 599–603 (2016).
[Crossref]

Thin Solid Films (1)

S. Yu, W. Zhang, L. Li, D. Xu, H. Dong, and Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films 552, 150–154 (2014).
[Crossref]

Other (8)

Nanomaterials and nanotechnology for advanced photovoltaics, https://cordis.europa.eu/project/rcn/97983/reporting/en

ITO Replacement: Non-ITO Transparent Conductor Technologies, Supply Chain and Market Forecast (2017), https://www.cdp.net/en/research/global-reports/global-supply-chain-report-2017 .

P. Yeh and C. Gu, Optics of Liquid Crystal Display (Wiley Interscience, 2010).

F. Bloisi, L. Rosario, M. Vicari, and L. Nasti, “Liquid crystal polymer composite materials for LCDs,” in Handbook of Visual Display Technology (Springer, 2016), pp. 2223–2250.

V. Stavrov, G. Stavreva, E. Tomerov, H. Dikov, and P. Vitanov, “Self-sensing cantilevers with nano-laminated Dielectric-Metal-Dielectric resistors, electronics technology,” 40th International Spring Seminar on Electronics Technology (ISSE) (IEEE, 2017), pp. 1–6.

I. C. Khoo, Liquid Crystals Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).

RefractiveIndex.INFO website, https://refractiveindex.info/

Z. Knittl, Optics of Thin Films (Wiley, 1976).

Supplementary Material (1)

NameDescription
» Visualization 1       Flexible Light Valve using PDLC and TiO2/Ag/TiO2 electrodes -"on" and "off" states and bending ability

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical transmittance spectra of TiO2/Ag/TiO2 multilayers on a PET as a function of Ag deposition time: 5″, 10″, and 15″ (the transmittance of PET substrate is shown for reference).
Fig. 2
Fig. 2 Sheet resistance of TiO2/Ag/TiO2 multilayer on PET substrate versus bending cycle for different deposition time of Ag: (a) 5″; (b) 10″ and (c) 15″.
Fig. 3
Fig. 3 (a) Schematic structure of PDLC flexible device and (b) Voltage -transmittance characteristics and response time measurements set-up.
Fig. 4
Fig. 4 Flexible Light Valve using PDLC and TiO2/Ag/TiO2 electrodes using 10″ deposition time of Ag layer : (a) Voltage-transmittance characteristics and (b) response time.
Fig. 5
Fig. 5 Flexible Light Valve using PDLC and TiO2/Ag/TiO2 electrodes (using 10″ deposition time of Ag layer) at: (a) “off” and (b) “on” states, (c-d) bending ability test at “off” and “on” states and (e) video demonstration (see also Visualization 1).
Fig. 6
Fig. 6 Simulated transmittance when undercoat and overcoat TiO2 layers are fixed (thickness of 40 nm) and Ag layer thickness vary from 15 nm to 25 nm.
Fig. 7
Fig. 7 Simulated transmittance when the undercoat and overcoat TiO2 layers are fixed (thickness of 30 nm) and Ag layer thickness vary from 15 nm to 31 nm.
Fig. 8
Fig. 8 (a) Experimental data: Transmittance of TiO2/Ag/TiO2 on PET at different deposition time of TiO2 (deposition time of Ag is fixed to 10 ′′ (which corresponds to 17 nm)) and (b) Numerical simulations: simulated transmittance of TiO2/Ag/TiO2 layer at different thickness of TiO2 (the thickness of Ag layer is fixed to 17 nm).
Fig. 9
Fig. 9 Simulation of the thicknesses (0-100nm) of undercoat and overcoat TiO2 layer, when the thickness of Ag is fixed at: (a) 10 nm; (b) 15 nm and (c) 20 nm; (d) Simulated transmittance dependence on the wavelengths for (a-c).

Tables (1)

Tables Icon

Table 1 The average transmittance and sheet resistance values

Metrics