Abstract

Fiber Bragg grating (FBG) inscription in standard fibers with femtosecond (fs) laser pulses was first reported nearly two decades ago. FBG fs inscription through the fiber polymer coating was recently demonstrated with a phase mask (PM) and High Numerical Aperture (High-NA) cylindrical lenses. In this work, we report on a new technique for FBG inscription through the acrylate polymer coating of optical fibers using a Low-NA lens and the PM. The FBGs were inscribed through the polymer coating of the fiber after a suitable fs photo-treatment process that was done to the polymer coating. We experimentally demonstrate inscription of high-quality FBGs yet with some damage to the coating. We characterize the wavelength sensitivity to strain and temperature of the inscribed FBGs, and compare them to FBGs that were inscribed in fibers that have undergone stripping, inscription, and recoating. The technique may simplify FBGs inscription through the coating especially in large mode area fibers and double clad fibers for laser applications in the future.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct inscription of Bragg gratings into coated fluoride fibers for widely tunable and robust mid-infrared lasers

Gayathri Bharathan, Robert I. Woodward, Martin Ams, Darren D. Hudson, Stuart D. Jackson, and Alex Fuerbach
Opt. Express 25(24) 30013-30019 (2017)

Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule

A.V. Dostovalov, A.A. Wolf, A.V. Parygin, V.E. Zyubin, and S.A. Babin
Opt. Express 24(15) 16232-16237 (2016)

Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses

Alexey Wolf, Alexandr Dostovalov, Kirill Bronnikov, and Sergey Babin
Opt. Express 27(10) 13978-13990 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).
  3. M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
    [Crossref]
  4. P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
    [Crossref]
  5. D. Varelas, D. M. Costantini, H. G. Limberger, and R. P. Salathé, “Fabrication of high-mechanical-resistance Bragg gratings in single-mode optical fibers with continuous-wave ultraviolet laser side exposure,” Opt. Lett. 23(5), 397–399 (1998).
    [Crossref] [PubMed]
  6. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
    [Crossref]
  7. L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
    [Crossref]
  8. R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
    [Crossref]
  9. D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
    [Crossref]
  10. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  11. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]
  12. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  13. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
    [Crossref]
  14. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
    [Crossref]
  15. S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
    [Crossref]
  16. A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
    [Crossref] [PubMed]
  17. A. Martinez, Y. M. E. Shazly, S. N. Kukureka, K. Sudgen, I. Y. Khrushchev, and I. Bennion, in European Conference on Optical Communications, Cannes, France, paper We3.P.13 (2006).
  18. D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
    [Crossref]
  19. S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
    [Crossref]
  20. C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel phase mask apparatus for ‘through the jacket’inscription of FBG’s in unloaded SMF-28 fiber,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper BThD3.
  21. M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
    [Crossref] [PubMed]
  22. J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).
  23. C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
    [Crossref] [PubMed]
  24. J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
    [Crossref]
  25. Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
    [Crossref] [PubMed]
  26. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]

2017 (1)

J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).

2014 (2)

M. Bernier, F. Trépanier, J. Carrier, and R. Vallée, “High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask,” Opt. Lett. 39(12), 3646–3649 (2014).
[Crossref] [PubMed]

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

2013 (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

2011 (1)

2008 (4)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (1)

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

2006 (1)

2005 (1)

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

2004 (3)

1999 (2)

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

1998 (1)

1997 (2)

M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
[Crossref]

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

1993 (1)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Albert, J.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Atkins, R. M.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Bennion, I.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Bernier, M.

Boilard, T.

J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).

Brownlow, D. L.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Carrier, J.

Caucheteur, C.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Chandonnet, P. J.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Chao, L.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Costantini, D. M.

Cuglietta, G.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

DeMarco, J. J.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Ding, H.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

Espindola, R. P.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Glodis, P. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Graver, T.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Grobnic, D.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Guo, T.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Habel, J.

J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).

Hamblin, J. R.

M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Ibsen, M.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Jean-Simon Frenière, F.

J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Kautek, W.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Khrushchev, I. Y.

Kranz, K. S.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Krüger, J.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Kurkjian, C. R.

M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
[Crossref]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Li, L.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Limberger, H. G.

Lippert, T.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Lu, P.

Mädebach, H.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Martin, S.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Martinez, A.

A. Martinez, I. Y. Khrushchev, and I. Bennion, “Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser,” Opt. Lett. 31(11), 1603–1605 (2006).
[Crossref] [PubMed]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Matthewson, M. J.

M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Mendez, A.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Mihailov, S. J.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

Paczkowski, M. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Qiao, X.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Ramos, R. T.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

Reed, W. A.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Reekie, L.

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

Salathé, R. P.

Shao, L.-Y.

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shenk, D. S.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Simoff, D. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

C. W. Smelser, D. Grobnic, and S. J. Mihailov, “Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask,” Opt. Lett. 29(15), 1730–1732 (2004).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

Strasser, T. A.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Su, D.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Trépanier, F.

Unruh, J.

Urech, L.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Vallée, R.

Varelas, D.

Walker, K. L.

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask,” Opt. Mater. Express 1(4), 754–765 (2011).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Wang, N. P.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Wang, Y.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Windeler, R. S.

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

Wokaun, A.

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Yang, H.

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Appl. Surf. Sci. (1)

J. Krüger, S. Martin, H. Mädebach, L. Urech, T. Lippert, A. Wokaun, and W. Kautek, “Femto- and nanosecond laser treatment of doped polymethylmethacrylate,” Appl. Surf. Sci. 247(1-4), 406–411 (2005).
[Crossref]

Electron. Lett. (5)

P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed, “High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity and thermal sensitivity in GeO2 doped optical fibres,” Electron. Lett. 29(13), 1191–1193 (1993).
[Crossref]

L. Chao, L. Reekie, and M. Ibsen, “Grating writing through fibre coating at 244 and 248 nm,” Electron. Lett. 35(11), 924–926 (1999).
[Crossref]

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fibre through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

S. J. Mihailov, D. Grobnic, and C. W. Smelser, “Efficient grating writing through fibre coating with femtosecond IR radiation and phase mask,” Electron. Lett. 43(8), 442–443 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (2)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and R. T. Ramos, “Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers,” IEEE Photonics Technol. Lett. 20(12), 973–975 (2008).
[Crossref]

R. P. Espindola, R. M. Atkins, N. P. Wang, D. A. Simoff, M. A. Paczkowski, R. S. Windeler, D. L. Brownlow, D. S. Shenk, P. A. Glodis, T. A. Strasser, J. J. DeMarco, and P. J. Chandonnet, “Highly reflective fiber Bragg gratings written through a vinyl ether coating,” IEEE Photonics Technol. Lett. 11(7), 833–835 (1999).
[Crossref]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet‐induced fiber Bragg gratings,” J. Appl. Phys. 76(73), 73–80 (1994).
[Crossref]

J. Lightwave Technol. (2)

M. J. Matthewson, C. R. Kurkjian, and J. R. Hamblin, “Acid stripping of fused silica optical fibers without strength degradation,” J. Lightwave Technol. 15(3), 490–497 (1997).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg Gratings Written in All-SiO2 and Ge-Doped Core Fibers With 800-nm Femtosecond Radiation and a Phase Mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Laser Chem. (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. 2008, 1–20 (2008).
[Crossref]

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Opt. Commun. (1)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. W. Smelser, G. Cuglietta, T. Graver, and A. Mendez, “Bragg grating writing through the polyimide coating of high NA optical fibres with femtosecond IR radiation,” Opt. Commun. 281(21), 5344–5348 (2008).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Sensors (Basel) (2)

Y. Wang, X. Qiao, H. Yang, D. Su, L. Li, and T. Guo, “Sensitivity-improved strain sensor over a large range of temperatures using an etched and regenerated fiber Bragg grating,” Sensors (Basel) 14(10), 18575–18582 (2014).
[Crossref] [PubMed]

J. Habel, T. Boilard, and F. Jean-Simon Frenière, “Trépanier, and M. Bernier, “Femtosecond FBG Written through the Coating for Sensing Applications,” Sensors (Basel) 17(2519), 1–11 (2017).

Other (3)

C. W. Smelser, F. Bilodeau, B. Malo, D. Grobnic, and S. J. Mihailov, “Novel phase mask apparatus for ‘through the jacket’inscription of FBG’s in unloaded SMF-28 fiber,” in Advanced Photonics & Renewable Energy, OSA Technical Digest (Optical Society of America, 2010), paper BThD3.

A. Martinez, Y. M. E. Shazly, S. N. Kukureka, K. Sudgen, I. Y. Khrushchev, and I. Bennion, in European Conference on Optical Communications, Cannes, France, paper We3.P.13 (2006).

R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Black coloring is observed on the fiber polymer coating in the pre-treatment area. This black coloring is observed with the naked eye only from the side of the fiber polymer coating where the pre-treatment procedure was.
Fig. 3
Fig. 3 Inspection of the fiber polymer coating after the pre-treatment procedure with the Vytran microscope imaging system. (a) Back side, the fiber looks similar to a pristine fiber. There is no shrinkage of the polymer coating. (b) Front side, there is no shrinkage of the polymer coating, but the black coloring of the coating is present.
Fig. 4
Fig. 4 Transmission spectra of a FBG inscribed through the acrylate coating after fs pre-photo-treatment. A transmission dip loss of −27 dB at a center Bragg wavelength of ~1548.4 nm is measured after ~5 min of inscription with pulse energy of 0.4 mJ and a repletion rate of 1 KHz.
Fig. 5
Fig. 5 Severe damage is visible in the FBG coating. (a) The acrylate polymer coating shrinkage from its original 240-250 µm diameter is clearly visible. The coating original size (seen on the right side) starts to shrink at the edge of the exposure. (b) Some of the polymer coating is removed and there is shrinkage of the polymer coating thickness to less than 150 µm in the center of the FBG exposure.
Fig. 6
Fig. 6 Transmission spectra of a FBG inscribed through the acrylate coating after fs pre-photo-treatment. A transmission dip loss of −30 dB at a center Bragg wavelength of 1548.5 nm is measured after ~10 min of inscription with pulse energy of 0.4 mJ and a repletion rate of 500 Hz.
Fig. 7
Fig. 7 Inspection of the FBG inscribed through the fiber polymer coating with the Vytran microscope imaging system. (a) Back side, the fiber looks similar to a pristine fiber. There is no shrinkage of the polymer coating. (b) Front side, there is no shrinkage of the polymer coating, but the black coloring of the coating is present.
Fig. 8
Fig. 8 Measured wavelength sensitivity to strain for all three FBGs inscribed. All three FBGs show a linear dependence on strain and a similar sensitivity of ~0.8 pm/µε (green x – with no coating, blue square – with recoating, red triangle – WTC).
Fig. 9
Fig. 9 Measured wavelength sensitivity to temperature for all three FBGs inscribed. All three FBGs show a linear dependence on temperature (green x – with no coating, blue square – with recoating, red triangle – WTC). The measured sensitivities are ~10.7 pm/°C for FBG WTC, ~10.5 pm/°C for FBG with no coating, and ~12.4 pm/°C for the recoated FBG.

Metrics