Abstract

We report on a continuous-wave alexandrite (Cr3+:BeAl2O4) microchip lasers operating at 680.4 nm and 749.5 nm laser wavelengths. Microchip resonators were realized by dielectric mirrors directly deposited on the alexandrite crystal surfaces. InGaN laser diode providing up to 3.5 W of the output power at ∼445 nm wavelength was used as a pump source. More than 210 mW and 570 mW of the laser radiation have been extracted from the microchip laser systems at 680.4 nm and 749.5 nm wavelengths, respectively. The corresponding slope efficiencies related to absorbed pump power were 15 % and 39 %.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tapered diode-pumped continuous-wave alexandrite laser

Ersen Beyatli, Ilyes Baali, Bernd Sumpf, Götz Erbert, Alfred Leitenstorfer, Alphan Sennaroglu, and Umit Demirbas
J. Opt. Soc. Am. B 30(12) 3184-3192 (2013)

High efficiency >26 W diode end-pumped Alexandrite laser

Achaya Teppitaksak, Ara Minassian, Gabrielle M. Thomas, and Michael J. Damzen
Opt. Express 22(13) 16386-16392 (2014)

Efficient and low-threshold Alexandrite laser pumped by a single-mode diode

Ismail Yorulmaz, Ersen Beyatli, Adnan Kurt, Alphan Sennaroglu, and Umit Demirbas
Opt. Mater. Express 4(4) 776-789 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Sennaroglu, ed., Solid-state Lasers and Applications (CRC Press, 2007).
  2. W. Koechner, Solid-State Laser Engineering (Springer - Verlag, 1999), 5th ed.
    [Crossref]
  3. J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
    [Crossref]
  4. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 W diode end-pumped Alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
    [Crossref] [PubMed]
  5. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24, 27212–27224 (2016).
    [Crossref] [PubMed]
  6. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24, 14836–14840 (2016).
    [Crossref] [PubMed]
  7. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), p. CL3.
  8. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
    [Crossref] [PubMed]
  9. S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).
  10. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30, 3184–3192 (2013).
    [Crossref]
  11. J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
    [Crossref] [PubMed]
  12. M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).
  13. E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
    [Crossref]
  14. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4, 776–789 (2014).
    [Crossref]
  15. J. Kuper and D. Brown, “High efficiency CW green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
    [Crossref]
  16. S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26, 075001 (2016).
    [Crossref]
  17. M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
    [Crossref]
  18. H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
    [Crossref]
  19. R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56, 1654–1661 (2017).
    [Crossref] [PubMed]
  20. A. A. Tarasov and H. Chu, “Sub-nanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).
  21. J. J. Zayhowski, J. Ochoa, and A. Mooradian, “Gain-switched pulsed operation of microchip lasers,” Opt. Lett. 14, 1318–1320 (1989).
    [Crossref] [PubMed]
  22. S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

2018 (2)

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
[Crossref] [PubMed]

A. A. Tarasov and H. Chu, “Sub-nanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

2017 (2)

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

R. Sawada, H. Tanaka, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56, 1654–1661 (2017).
[Crossref] [PubMed]

2016 (4)

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26, 075001 (2016).
[Crossref]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped Alexandrite lasers in Q-switched and cavity-dumped Q-switched operation,” Opt. Express 24, 27212–27224 (2016).
[Crossref] [PubMed]

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24, 14836–14840 (2016).
[Crossref] [PubMed]

2014 (3)

2013 (1)

2007 (1)

S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).

2006 (1)

J. Kuper and D. Brown, “High efficiency CW green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

2005 (2)

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

1989 (1)

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

1979 (1)

Akbari, R.

Arbabzadah, E. A.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), p. CL3.

Baali, I.

Beyatli, E.

Brown, D.

J. Kuper and D. Brown, “High efficiency CW green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Cech, M.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), p. CL3.

Chu, H.

A. A. Tarasov and H. Chu, “Sub-nanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

Damzen, M. J.

Demirbas, U.

Erbert, G.

Fang, S.

S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

Fibrich, M.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Gausmann, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Ghanbari, S.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24, 14836–14840 (2016).
[Crossref] [PubMed]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26, 075001 (2016).
[Crossref]

Hartung, A.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Hengesbach, S.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Hoeffner, J.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Hoffmann, H.-D.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Jelinkova, H.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Jenssen, H.

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

Jenssen, H. P.

Jian-hong, G.

S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

Jun, C.

S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

Jungbluth, B.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Kannari, F.

Kerridge-Johns, W. R.

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer - Verlag, 1999), 5th ed.
[Crossref]

Kuper, J.

J. Kuper and D. Brown, “High efficiency CW green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Kuper, J. W.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), p. CL3.

Kurt, A.

Leitenstorfer, A.

Liu, J.

S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).

Liu, S.

S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).

Major, A.

S. Ghanbari, R. Akbari, and A. Major, “Femtosecond Kerr-lens mode-locked Alexandrite laser,” Opt. Express 24, 14836–14840 (2016).
[Crossref] [PubMed]

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26, 075001 (2016).
[Crossref]

Mildren, R.

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

Minassian, A.

Mooradian, A.

Morris, R. C.

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[Crossref] [PubMed]

Munk, A.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

O’Dell, E. W.

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

J. C. Walling, H. P. Jenssen, R. C. Morris, E. W. O’Dell, and O. G. Peterson, “Tunable-laser performance in BeAl2O4:Cr3+,” Opt. Lett. 4, 182–183 (1979).
[Crossref] [PubMed]

Ochoa, J.

Ogilvy, H.

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

Peterson, O. G.

Piper, J. A.

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

Sawada, R.

Sennaroglu, A.

Sheng, X.

Strotkamp, M.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Sugiyama, N.

Sulc, J.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Sumpf, B.

Tanaka, H.

Tarasov, A. A.

A. A. Tarasov and H. Chu, “Sub-nanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

Teppitaksak, A.

Thomas, G. M.

Traub, M.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Vyhlidal, D.

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Walling, J.

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

Walling, J. C.

Wang, L.

S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).

Withford, M.

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

Witte, U.

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

Yorulmaz, I.

Zayhowski, J. J.

Appl. Opt. (1)

Appl. Phys. B (1)

H. Ogilvy, M. Withford, R. Mildren, and J. A. Piper, “Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers,” Appl. Phys. B 81, 637–644 (2005).
[Crossref]

IEEE J Quantum Electron. (1)

J. Walling, O. Peterson, H. Jenssen, R. C. Morris, and E. W. O’Dell, “Tunable Alexandrite Lasers,” IEEE J Quantum Electron. QE-16, 1302–1315 (1980).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Zhejiang Univ. A (1)

S. Fang, C. Jun, and G. Jian-hong, “Controllable high repetition rate gain-switched Nd:YVO4 microchip laser,” J. Zhejiang Univ. A 6, 79–82 (2005).

Laser Phys. (1)

S. Ghanbari and A. Major, “High power continuous-wave Alexandrite laser with green pump,” Laser Phys. 26, 075001 (2016).
[Crossref]

Laser Phys. Lett. (1)

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped Alexandrite TEM00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

Laser Physics (1)

M. Fibrich, J. Sulc, D. Vyhlidal, H. Jelinkova, and M. Cech, “Alexandrite spectroscopic and laser characteristic investigation within a 78–400 K temperature range,” Laser Physics 27, 115801 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (4)

M. Strotkamp, U. Witte, A. Munk, A. Hartung, S. Gausmann, S. Hengesbach, M. Traub, H.-D. Hoffmann, J. Hoeffner, and B. Jungbluth, “Broadly tunable, longitudinally diode-pumped Alexandrite laser,” Proc. SPIE 8959, 89591G (2014).

S. Liu, J. Liu, and L. Wang, “Tunable ultraviolet laser source from a frequency doubled alexandrite laser - art. no. 67822Y,” Proc. SPIE 6782, Y7822 (2007).

J. Kuper and D. Brown, “High efficiency CW green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

A. A. Tarasov and H. Chu, “Sub-nanosecond lasers for cosmetics and dermatology,” Proc. SPIE 10511, 105110R (2018).

Other (3)

A. Sennaroglu, ed., Solid-state Lasers and Applications (CRC Press, 2007).

W. Koechner, Solid-State Laser Engineering (Springer - Verlag, 1999), 5th ed.
[Crossref]

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended Tuning Range of Alexandrite at Elevated Temperatures,” in Advanced Solid State Lasers, vol. 6 of OSA Proceedings Series (Optical Society of America, 1990), p. CL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic layout of InGaN-diode pumped alexandrite laser system designed for operation at 680.4 nm; λp – pump wavelength, λL – generated wavelength, L1 – collimating lens, L2 – focusing lens, BSO – beam shaping optics.
Fig. 2
Fig. 2 Output characteristic of alexandrite microchip laser at 680.4 nm wavelength at 78 K crystal temperature.
Fig. 3
Fig. 3 Maximal output power of alexandrite microchip laser at 680.4 nm as a function of crystal temperature
Fig. 4
Fig. 4 Spectral line shape of alexandrite microchip laser radiation at 680.4 nm wavelength; inset — spatial beam profile at maximal output power.
Fig. 5
Fig. 5 Output characteristic of alexandrite microchip laser at 749.5 nm wavelength at 354 K crystal temperature.
Fig. 6
Fig. 6 Spectral line shape of alexandrite microchip laser radiation at 749.5 nm wavelength; inset — spatial beam profile at maximal output power.
Fig. 7
Fig. 7 Pulse train of gain-switched alexandrite microchip laser at 680.4 nm; inset — the corresponding temporal pulse shape

Metrics