Abstract

This article is to summarize the development of technology of the liquid crystal based antenna. Two major trends of such antennas are discussed. One is the electronically steered phased array, and the other is the antenna based on the metamaterials concept. The major function of liquid crystal in a phased-array antenna is obviously to adjust the phase of electromagnetic waves. Hence different kinds of phase shifters made of liquid crystal are talked over in this article. As for the metamaterial or metasurface based antenna, the liquid crystal is used to adjust the refractive index of the surroundings of the highly dense antenna elements to further determine if they resonate or not. Other than the liquid crystal based microwave devices, the development of liquid crystal itself is of great importance. The very heart of all the devices mentioned above shall be the characteristics of liquid crystal at microwave range. The material development is summarized as well.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

19 June 2019: A typographical correction was made to the article title.


OSA Recommended Articles
X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna

Claire M. Watts, Andreas Pedross-Engel, David R. Smith, and Matthew S. Reynolds
J. Opt. Soc. Am. B 34(2) 300-306 (2017)

Liquid crystal depolarizer based on photoalignment technology

Bing-Yan Wei, Peng Chen, Shi-Jun Ge, Li-Chao Zhang, Wei Hu, and Yan-Qing Lu
Photon. Res. 4(2) 70-73 (2016)

Optical multi-beam forming method based on a liquid crystal optical phased array

Feng Xiao and Lingjiang Kong
Appl. Opt. 56(36) 9854-9861 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
    [Crossref]
  2. C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
    [Crossref]
  3. S. Bulja, D. Mirshekar-Syahkal, M. Yazdanpanahi, R. James, S. E. Day, and F. A. Fernandez, (2010, September). Liquid crystal based phase shifters in 60 GHz band. In The 3rd European Wireless Technology Conference (pp. 37–40). IEEE.
  4. T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
    [Crossref]
  5. R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
    [Crossref]
  6. C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
    [Crossref]
  7. S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett. 46(11), 769–771 (2010).
    [Crossref]
  8. L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
    [Crossref]
  9. F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
    [Crossref]
  10. C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
    [Crossref]
  11. A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
    [Crossref]
  12. J. F. Li, H. Xu, and D. P. Chu, (2016, October). Design of liquid crystal based coplanar waveguide tunable phase shifter with no floating electrodes for 60–90 GHz applications. In 2016 46th European Microwave Conference (EuMC) (pp. 1047–1050). IEEE.
  13. A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
    [Crossref]
  14. W. Hu, O. H. Karabey, A. Gäbler, A. E. Prasetiadi, M. Jost, and R. Jakoby, (2014, October). Liquid crystal varactor loaded variable phase shifter for integrated, compact, and fast beamsteering antenna systems. In 2014 9th European Microwave Integrated Circuit Conference (pp. 660–663). IEEE.
    [Crossref]
  15. N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
    [Crossref]
  16. I. C. Khoo, (1994). Liquid crystal nonlinear optics. In Frontiers of Polymers and Advanced Materials (pp. 117–139). Springer, Boston, MA.
  17. P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
    [Crossref]
  18. F. Goelden, S. Mueller, P. Scheele, M. Wittek, and R. Jakoby, (2006, September). IP3 measurements of liquid crystals at microwave frequencies. In 2006 European Microwave Conference (pp. 971–974). IEEE.
    [Crossref]
  19. T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
    [Crossref]
  20. Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
    [Crossref]
  21. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016).
    [Crossref]
  22. T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
    [Crossref]
  23. O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
    [Crossref]
  24. O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
    [Crossref]
  25. S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
    [Crossref]
  26. O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
    [Crossref]
  27. O. H. Karabey, S. Bausch, S. Bildik, S. Strunck, A. Gaebler, and R. Jakoby, (2012, October). Design and application of a liquid crystal varactor based tunable coupled line for polarization agile antennas. In 2012 42nd European Microwave Conference (pp. 739–742). IEEE.
    [Crossref]
  28. V. G. Veselago, (2002). Electrodynamics of media with simultaneously negative electric permittivity and magnetic permeability. In Advances in electromagnetics of complex media and metamaterials (pp. 83–97). Springer, Dordrecht.
  29. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  30. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [Crossref]
  31. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  32. P. Gay-Balmaz and O. J. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
    [Crossref]
  33. D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
    [Crossref]
  34. A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).
    [Crossref]
  35. H. Odabasi and F. L. Teixeira, (2013, July). Complementary electric-field-coupled (CELC) based resonator antennas, In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 772–773). IEEE.
    [Crossref]
  36. C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
    [Crossref]
  37. H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
    [Crossref]
  38. X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
    [Crossref]
  39. A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
    [Crossref]
  40. M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
    [Crossref]
  41. H. Kang and S. Lim, “Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna,” IEEE Trans. Antenn. Propag. 62(5), 2368–2373 (2014).
    [Crossref]
  42. S. Foo, (2017, March). Liquid-crystal-tunable metasurface antennas. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 3026–3030). IEEE.
    [Crossref]
  43. S. C. Pavone, E. Martini, F. Caminita, M. Albani, and S. Maci, (2017, March). Dispersion analysis of a reconfigurable grounded slab of liquid crystal loaded by an inductive metasurface. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 930–932). IEEE.
    [Crossref]
  44. A. Couch and A. Grbic, (2016, September). A phase-tunable, liquid crystal-based metasurface. In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (pp. 94–96). IEEE.
    [Crossref]
  45. F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
    [Crossref] [PubMed]
  46. T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
    [Crossref]
  47. C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34(2), 300–306 (2017).
    [Crossref]
  48. R. Stevenson, M. Sazegar, A. Bily, M. Johnson, and N. Kundtz, (2016, September). Metamaterial surface antenna technology: Commercialization through diffractive metamaterials and liquid crystal display manufacturing. In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (pp. 349–351). IEEE.
  49. R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
    [Crossref]
  50. M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
    [Crossref]
  51. W. L. Stutzman and G. A. Thiele, (2012). Antenna theory and design. John Wiley & Sons.
  52. A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.
  53. S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
    [Crossref]
  54. R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
    [Crossref]
  55. S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
    [Crossref]
  56. K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
    [Crossref]
  57. A. Manabe, (2013, April). Liquid crystals for microwave applications. In 2013 7th European Conference on Antennas and Propagation (EuCAP) (pp. 1793–1794). IEEE.
    [Crossref]
  58. M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
    [Crossref]
  59. M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
    [Crossref]
  60. C. Fritzsch and M. Wittek, (2017, July). Recent developments in liquid crystals for microwave applications, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (pp. 1217–1218) IEEE.
    [Crossref]
  61. C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
    [Crossref]
  62. T. L. Ting, C. W. Lai, Y. Y. Kung, C. Y. Chen, W. H. Hsu, and J. J. Su, (2015, March). Investigation of response time of vertically aligned in-plane-switching LCD mode. In Advances in Display Technologies V (Vol. 9385, p. 938502). International Society for Optics and Photonics.

2018 (2)

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

2017 (3)

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34(2), 300–306 (2017).
[Crossref]

2016 (3)

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
[Crossref]

F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016).
[Crossref]

2015 (4)

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
[Crossref]

2014 (3)

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

H. Kang and S. Lim, “Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna,” IEEE Trans. Antenn. Propag. 62(5), 2368–2373 (2014).
[Crossref]

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

2013 (3)

H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

2012 (3)

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

2011 (2)

S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
[Crossref]

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

2010 (2)

S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett. 46(11), 769–771 (2010).
[Crossref]

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

2009 (2)

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

2008 (2)

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
[Crossref]

2007 (1)

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

2006 (1)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

2005 (1)

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

2004 (2)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

2003 (1)

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

2002 (3)

T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).
[Crossref]

P. Gay-Balmaz and O. J. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

1998 (1)

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

1993 (1)

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

1991 (1)

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Ayluctarhan, M.

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

Baena, J. D.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Barker, N. S.

S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
[Crossref]

Bausch, S.

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

Beruete, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Best, P.

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

Bildik, S.

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
[Crossref]

Bily, A. H.

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Bonache, J.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Braun, H.

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

Brunton, S. L.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Bulja, S.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett. 46(11), 769–771 (2010).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

Cai, L.

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

Caloz, C.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
[Crossref]

Canisius, J.

M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
[Crossref]

Chang, C. C.

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

Chang, S. F.

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

Chen, C. Y.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Chu, D.

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

Colpo, S.

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

Cummer, S. A.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Cure, D.

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Damm, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Day, S. E.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

DeSalvo, J. R.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).
[Crossref]

Erni, D.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Falcone, F.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Fernandez, F. A.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

Ferrari, P.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Franc, A. L.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Fritzsch, C.

M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
[Crossref]

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
[Crossref]

C. Fritzsch and M. Wittek, (2017, July). Recent developments in liquid crystals for microwave applications, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (pp. 1217–1218) IEEE.
[Crossref]

Fu, J.-H.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Fujikake, H.

T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
[Crossref]

Fumeaux, C.

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

Gaebler, A.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[Crossref]

Gelin, P.

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Giacomozzi, F.

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

Goebel, M.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Goelden, F.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Gollub, J.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Gong, S.

S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
[Crossref]

Grbic, A.

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).
[Crossref]

Guney, D. O.

H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

Hagan, D. J.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Han, S.

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

Hand, T. H.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Hock, C.

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Honma, M.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Horestani, A. K.

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

Hou, Y.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Hsu, W. H.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Hu, W.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

Huret, F.

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Isota, Y.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Ito, R.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Ito, Y.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Itoh, T.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
[Crossref]

Jakoby, R.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
[Crossref]

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

James, R.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

Jiang, S.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Johnson, M. C.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Jokanovic, B.

M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
[Crossref]

Jost, M.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

Kamei, T.

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

Kang, H.

H. Kang and S. Lim, “Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna,” IEEE Trans. Antenn. Propag. 62(5), 2368–2373 (2014).
[Crossref]

Karabey, O. H.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

Karasawa, Y.

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

Kawakami, T.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Klouche-Djedid, A.

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

Kuki, T.

T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
[Crossref]

Kundtz, N.

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Kundtz, N. B.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Kutz, J. N.

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

Lackner, A. M.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Lai, C. W.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Laso, M. A. G.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Laurent, P.

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Lee, M. A.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Letz, M.

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

Li, J.

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

Li, L.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Li, M.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Li, Z.

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

Lim, K. C.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Lim, S.

H. Kang and S. Lim, “Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna,” IEEE Trans. Antenn. Propag. 62(5), 2368–2373 (2014).
[Crossref]

Lin, C. S.

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

Liu, L.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Lopetegi, T.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Lüssem, G.

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

Ma, L. Q.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Ma, S.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Manabe, A.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Margerum, J. D.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Marqués, R.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Martin, N.

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Martin, O. J.

P. Gay-Balmaz and O. J. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[Crossref]

Martín, F.

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Mehmood, A.

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

Meng, F. Y.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Meyer, P.

M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
[Crossref]

Miller, L. J.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Mirshekar-Syahkal, D.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett. 46(11), 769–771 (2010).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

Miura, R.

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

Mock, J. J.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Moessinger, A.

A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
[Crossref]

Molisch, A. F.

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

Moritake, H.

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

Mueller, S.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Muller, S.

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

Müller, S.

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

Naqui, J.

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ninic, M.

M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
[Crossref]

Nomoto, T.

T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
[Crossref]

Nose, T.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Odabasi, H.

H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

H. Odabasi and F. L. Teixeira, (2013, July). Complementary electric-field-coupled (CELC) based resonator antennas, In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 772–773). IEEE.
[Crossref]

Onodera, N.

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

Ozaki, R.

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Palffy-Muhoray, P.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Pedross-Engel, A.

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Penirschke, A.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

Pistono, E.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Prigent, G.

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Rehder, G.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Rennings, A.

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
[Crossref]

Reynolds, M. S.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

Sajuyigbe, S.

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Sangodoyin, S.

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

Sasamori, T.

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Sazegar, M.

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Scheele, P.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

Sekiguchi, T.

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

Shaterian, Z.

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

Sheik-bahae, M.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Shen, H.

S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
[Crossref]

Sherman, E.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Shu, Y. H.

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

Smith, D. R.

C. M. Watts, A. Pedross-Engel, D. R. Smith, and M. S. Reynolds, “X-band SAR imaging with a liquid-crystal-based dynamic metasurface antenna,” J. Opt. Soc. Am. B 34(2), 300–306 (2017).
[Crossref]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Smith, W. H.

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Sohrabi, F.

F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016).
[Crossref]

Sorolla, M.

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

Stevenson, R. A.

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Strunck, S.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

Su, J. J.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Teixeira, F. L.

H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

H. Odabasi and F. L. Teixeira, (2013, July). Complementary electric-field-coupled (CELC) based resonator antennas, In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 772–773). IEEE.
[Crossref]

Ting, T. L.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Tsao, S. W.

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

Van Stryland, E. W.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, R.

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

Watts, C. M.

Wei, T. H.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Weickhmann, C.

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

Weil, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

Wittek, M.

M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

C. Fritzsch and M. Wittek, (2017, July). Recent developments in liquid crystals for microwave applications, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (pp. 1217–1218) IEEE.
[Crossref]

Wu, Q.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Xu, H.

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

Xu, S.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Yang, F.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Yang, X.

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

Yokota, M.

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, W.

F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016).
[Crossref]

Yuan, H. J.

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

Zhang, S. Q.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Zhu, L.

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Appl. Phys. Lett. (2)

D. Schurig, J. J. Mock, and D. R. Smith, “Electric-field-coupled resonators for negative permittivity metamaterials,” Appl. Phys. Lett. 88(4), 041109 (2006).
[Crossref]

T. H. Hand, J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, “Characterization of complementary electric field coupled resonant surfaces,” Appl. Phys. Lett. 93(21), 212504 (2008).
[Crossref]

Dig. Tech. Pap. (3)

M. Wittek, C. Fritzsch, and J. Canisius, “55.1 Invited Paper: Liquid Crystals for Smart Antennas and Other Microwave Applications. In SID Symposium,” Dig. Tech. Pap. 46(1), 824–826 (2015).
[Crossref]

C. W. Lai, S. W. Tsao, C. Y. Chen, T. L. Ting, W. H. Hsu, and J. J. Su, “24.2: Investigation of Flexoelectric Effect in Vertically‐Aligned In‐Plane‐Switching Mode by Low Frequency Driving. In SID Symposium,” Dig. Tech. Pap. 45(1), 312–313 (2014).
[Crossref]

R. A. Stevenson, A. H. Bily, D. Cure, M. Sazegar, and N. Kundtz, “55.2: Invited paper: Rethinking wireless communications: Advanced antenna design using LCD technology. In SID Symposium,” Dig. Tech. Pap. 46(1), 827–830 (2015).
[Crossref]

Electron. Commun. Jpn. Part III Fundam. Electron. Sci. (1)

T. Sekiguchi, R. Miura, A. Klouche‐Djedid, and Y. Karasawa, “A method of designing two‐dimensional complex coefficient FIR digital filters for broadband digital beamforming antennas by a combination of spectral transformation and a window method,” Electron. Commun. Jpn. Part III Fundam. Electron. Sci. 81(3), 22–34 (1998).
[Crossref]

Electron. Lett. (4)

O. H. Karabey, H. Braun, M. Letz, A. Mehmood, R. Jakoby, and M. Ayluctarhan, “Liquid crystal based phased array antenna with improved beam scanning capability,” Electron. Lett. 50(6), 426–428 (2014).
[Crossref]

C. Weil, S. Müller, P. Scheele, P. Best, G. Lüssem, and R. Jakoby, “Highly-anisotropic liquid-crystal mixtures for tunable microwave devices,” Electron. Lett. 39(24), 1732–1734 (2003).
[Crossref]

S. Bulja and D. Mirshekar-Syahkal, “Meander line millimetre-wave liquid crystal based phase shifter,” Electron. Lett. 46(11), 769–771 (2010).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

IEEE Antennas Propag. Mag. (1)

C. Caloz, T. Itoh, and A. Rennings, “CRLH metamaterial leaky-wave and resonant antennas,” IEEE Antennas Propag. Mag. 50(5), 25–39 (2008).
[Crossref]

IEEE J. Sel. Top. Signal Process. (1)

F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE J. Sel. Top. Signal Process. 10(3), 501–513 (2016).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

M. Ninic, B. Jokanovic, and P. Meyer, “Reconfigurable multi-state composite split-ring resonators,” IEEE Microw. Wirel. Compon. Lett. 26(4), 267–269 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (5)

H. Kang and S. Lim, “Electrically small dual-band reconfigurable complementary split-ring resonator (CSRR)-loaded eighth-mode substrate integrated waveguide (EMSIW) antenna,” IEEE Trans. Antenn. Propag. 62(5), 2368–2373 (2014).
[Crossref]

X. Yang, S. Xu, F. Yang, M. Li, Y. Hou, S. Jiang, and L. Liu, “A broadband high-efficiency reconfigurable reflectarray antenna using mechanically rotational elements,” IEEE Trans. Antenn. Propag. 65(8), 3959–3966 (2017).
[Crossref]

A. K. Horestani, Z. Shaterian, J. Naqui, F. Martín, and C. Fumeaux, “Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas,” IEEE Trans. Antenn. Propag. 64(9), 3766–3776 (2016).
[Crossref]

M. C. Johnson, S. L. Brunton, N. B. Kundtz, and J. N. Kutz, “Sidelobe canceling for reconfigurable holographic metamaterial antenna,” IEEE Trans. Antenn. Propag. 63(4), 1881–1886 (2015).
[Crossref]

O. H. Karabey, S. Bildik, S. Bausch, S. Strunck, A. Gaebler, and R. Jakoby, “Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines,” IEEE Trans. Antenn. Propag. 61(1), 70–76 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (9)

O. H. Karabey, A. Gaebler, S. Strunck, and R. Jakoby, “A 2-D Electronically Steered Phased-Array Antenna With 2$\,\times\, $2 Elements in LC Display Technology,” IEEE Trans. Microw. Theory Tech. 60(5), 1297–1306 (2012).
[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[Crossref]

S. Gong, H. Shen, and N. S. Barker, “A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches,” IEEE Trans. Microw. Theory Tech. 59(4), 894–900 (2011).
[Crossref]

C. S. Lin, S. F. Chang, C. C. Chang, and Y. H. Shu, “Design of a reflection-type phase shifter with wide relative phase shift and constant insertion loss,” IEEE Trans. Microw. Theory Tech. 55(9), 1862–1868 (2007).
[Crossref]

T. Kuki, H. Fujikake, and T. Nomoto, “Microwave variable delay line using dual-frequency switching-mode liquid crystal,” IEEE Trans. Microw. Theory Tech. 50(11), 2604–2609 (2002).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

R. James, F. A. Fernandez, S. E. Day, S. Bulja, and D. Mirshekar-Syahkal, “Accurate modeling for wideband characterization of nematic liquid crystals for microwave applications,” IEEE Trans. Microw. Theory Tech. 57(12), 3293–3297 (2009).
[Crossref]

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of dielectric properties of nematic liquid crystals at millimeter wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

Z. Li, S. Han, S. Sangodoyin, R. Wang, and A. F. Molisch, “Joint optimization of hybrid beamforming for multi-user massive MIMO downlink,” IEEE Trans. Wirel. Commun. 17(6), 3600–3614 (2018).
[Crossref]

IET Microw. Antennas Propag. (1)

S. Ma, S. Q. Zhang, L. Q. Ma, F. Y. Meng, D. Erni, L. Zhu, J.-H. Fu, and Q. Wu, “Compact planar array antenna with electrically beam steering from backfire to endfire based on liquid crystal,” IET Microw. Antennas Propag. 12(7), 1140–1146 (2018).
[Crossref]

Int. J. Microw. Wirel. Technol. (1)

C. Fritzsch, F. Giacomozzi, O. H. Karabey, S. Bildik, S. Colpo, and R. Jakoby, “Advanced characterization of a W-band phase shifter based on liquid crystals and MEMS technology,” Int. J. Microw. Wirel. Technol. 4(3), 379–386 (2012).
[Crossref]

J. Appl. Phys. (3)

H. Odabasi, F. L. Teixeira, and D. O. Guney, “Electrically small, complementary electric-field-coupled resonator antennas,” J. Appl. Phys. 113(8), 084903 (2013).
[Crossref]

A. Grbic and G. V. Eleftheriades, “Experimental verification of backward-wave radiation from a negative refractive index metamaterial,” J. Appl. Phys. 92(10), 5930–5935 (2002).
[Crossref]

P. Gay-Balmaz and O. J. Martin, “Electromagnetic resonances in individual and coupled split-ring resonators,” J. Appl. Phys. 92(5), 2929–2936 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys. 56(1), 011701 (2017).
[Crossref]

R. Ito, T. Kawakami, Y. Ito, T. Sasamori, Y. Isota, M. Honma, and T. Nose, “Fundamental properties of novel design microstrip line type of liquid crystal phase shifter in microwave region,” Jpn. J. Appl. Phys. 51(4R), 044104 (2012).
[Crossref]

Liq. Cryst. (1)

K. C. Lim, J. D. Margerum, A. M. Lackner, L. J. Miller, E. Sherman, and W. H. Smith, “Liquid crystal birefringence for millimeter wave radar,” Liq. Cryst. 14(2), 327–337 (1993).
[Crossref]

Microw. Opt. Technol. Lett. (1)

N. Martin, P. Laurent, G. Prigent, P. Gelin, and F. Huret, “Technological evolution and performances improvements of a tunable phase‐shifter using liquid crystal,” Microw. Opt. Technol. Lett. 43(4), 338–341 (2004).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (3)

P. Palffy-Muhoray, H. J. Yuan, L. Li, M. A. Lee, J. R. DeSalvo, T. H. Wei, M. Sheik-bahae, D. J. Hagan, and E. W. Van Stryland, “Measurements of third order optical nonlinearities of nematic liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 207(1), 291–305 (1991).
[Crossref]

T. Kamei, M. Yokota, R. Ozaki, H. Moritake, and N. Onodera, “Microstrip array antenna with liquid crystals loaded phase shifter,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 542(1), 167–689 (2011).
[Crossref]

M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, and R. Jakoby, “Evolution of microwave nematic liquid crystal mixtures and development of continuously tuneable micro-and millimetre wave components,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 610(1), 173–186 (2015).
[Crossref]

Phys. Rev. Lett. (3)

F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marqués, F. Martín, and M. Sorolla, “Babinet principle applied to the design of metasurfaces and metamaterials,” Phys. Rev. Lett. 93(19), 197401 (2004).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Other (18)

H. Odabasi and F. L. Teixeira, (2013, July). Complementary electric-field-coupled (CELC) based resonator antennas, In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) (pp. 772–773). IEEE.
[Crossref]

O. H. Karabey, S. Bausch, S. Bildik, S. Strunck, A. Gaebler, and R. Jakoby, (2012, October). Design and application of a liquid crystal varactor based tunable coupled line for polarization agile antennas. In 2012 42nd European Microwave Conference (pp. 739–742). IEEE.
[Crossref]

V. G. Veselago, (2002). Electrodynamics of media with simultaneously negative electric permittivity and magnetic permeability. In Advances in electromagnetics of complex media and metamaterials (pp. 83–97). Springer, Dordrecht.

F. Goelden, S. Mueller, P. Scheele, M. Wittek, and R. Jakoby, (2006, September). IP3 measurements of liquid crystals at microwave frequencies. In 2006 European Microwave Conference (pp. 971–974). IEEE.
[Crossref]

I. C. Khoo, (1994). Liquid crystal nonlinear optics. In Frontiers of Polymers and Advanced Materials (pp. 117–139). Springer, Boston, MA.

J. F. Li, H. Xu, and D. P. Chu, (2016, October). Design of liquid crystal based coplanar waveguide tunable phase shifter with no floating electrodes for 60–90 GHz applications. In 2016 46th European Microwave Conference (EuMC) (pp. 1047–1050). IEEE.

A. Moessinger, C. Fritzsch, S. Bildik, and R. Jakoby, (2010, May). Compact tunable Ka-band phase shifter based on liquid crystals, In 2010 IEEE MTT-S International Microwave Symposium (pp. 1020–1023). IEEE.
[Crossref]

W. Hu, O. H. Karabey, A. Gäbler, A. E. Prasetiadi, M. Jost, and R. Jakoby, (2014, October). Liquid crystal varactor loaded variable phase shifter for integrated, compact, and fast beamsteering antenna systems. In 2014 9th European Microwave Integrated Circuit Conference (pp. 660–663). IEEE.
[Crossref]

S. Bulja, D. Mirshekar-Syahkal, M. Yazdanpanahi, R. James, S. E. Day, and F. A. Fernandez, (2010, September). Liquid crystal based phase shifters in 60 GHz band. In The 3rd European Wireless Technology Conference (pp. 37–40). IEEE.

S. Foo, (2017, March). Liquid-crystal-tunable metasurface antennas. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 3026–3030). IEEE.
[Crossref]

S. C. Pavone, E. Martini, F. Caminita, M. Albani, and S. Maci, (2017, March). Dispersion analysis of a reconfigurable grounded slab of liquid crystal loaded by an inductive metasurface. In 2017 11th European Conference on Antennas and Propagation (EUCAP) (pp. 930–932). IEEE.
[Crossref]

A. Couch and A. Grbic, (2016, September). A phase-tunable, liquid crystal-based metasurface. In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (pp. 94–96). IEEE.
[Crossref]

A. Manabe, (2013, April). Liquid crystals for microwave applications. In 2013 7th European Conference on Antennas and Propagation (EuCAP) (pp. 1793–1794). IEEE.
[Crossref]

W. L. Stutzman and G. A. Thiele, (2012). Antenna theory and design. John Wiley & Sons.

A. Penirschke, S. Muller, P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, (2004, October). Cavity perturbation method for characterization of liquid crystals up to 35 GHz, In 34th European Microwave Conference,2004.2, 545–548. IEEE.

T. L. Ting, C. W. Lai, Y. Y. Kung, C. Y. Chen, W. H. Hsu, and J. J. Su, (2015, March). Investigation of response time of vertically aligned in-plane-switching LCD mode. In Advances in Display Technologies V (Vol. 9385, p. 938502). International Society for Optics and Photonics.

R. Stevenson, M. Sazegar, A. Bily, M. Johnson, and N. Kundtz, (2016, September). Metamaterial surface antenna technology: Commercialization through diffractive metamaterials and liquid crystal display manufacturing. In 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (pp. 349–351). IEEE.

C. Fritzsch and M. Wittek, (2017, July). Recent developments in liquid crystals for microwave applications, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (pp. 1217–1218) IEEE.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the RTPS with liquid-crystal varactors
Fig. 2
Fig. 2 Schematic of loaded transmission line
Fig. 3
Fig. 3 Schematic of periodically loaded transmission line
Fig. 4
Fig. 4 Equivalent circuit of transmission line (a) with shunt LC varicap and (b) with time and position dependent capacitance
Fig. 5
Fig. 5 Shunt capacitances varied by microwave electric field with different FWHMs: (a) 100Hz and (b) 10MHz
Fig. 6
Fig. 6 The nonlinear effect of the LC phase shifters (a) power spectrum around carrier frequencies and (b) power spectrum around 3-fold carrier frequencies
Fig. 7
Fig. 7 Schematic of phased array with (a) digital beam steering and (b) analog beam steering
Fig. 8
Fig. 8 Schematic of a polarization agile antenna realized by LC-varactor TCL (a) top view, (b) cross-section view of TCL, and (c) cross-section view of patch
Fig. 9
Fig. 9 Sketch of a CRLH transmission line leaky wave antenna illustrating three radiation regions: broadside, backward (left-hand) and forward (right-hand)
Fig. 10
Fig. 10 (a) Equivalent circuit for the unit cell and (b) Band diagram of CRLH of a CRLH transmission line

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F o M = Δ Φ max I L max
V z = L 0 I t
I z = Q t = C ( z , t ) V t V C ( z , t ) t
2 V z 2 L 0 C ( z , t ) 2 V t 2 = 2 L 0 C ( z , t ) t V t + L 0 V 2 C ( z , t ) t 2
2 E n 2 c 2 2 E t 2 = 1 ε 0 c 2 2 P NL t 2
γ 1 θ t = ( K 1 cos 2 θ + K 3 sin 2 θ ) 2 θ x 2 + ( K 3 K 1 ) sin θ cos θ ( θ x ) 2 + ε 0 Δ ε E 2 sin θ cos θ
( K 1 cos 2 θ + K 3 sin 2 θ ) ( θ x ) 2 D d c 2 ε sin 2 θ + ε cos 2 θ = D d c 2 ε sin 2 θ max + ε cos 2 θ max
β ( ω ) = 1 Δ z ( ω L R C R 1 ω L L C L )
τ = ε ε ε
η = τ max ( tan δ , tan δ )

Metrics