Abstract

Terahertz (THz) generation in a periodically poled lithium niobate crystal via cascaded difference-frequency generation based on Cherenkov-type quasi-phase matching (QPM) is proposed. Photon conversion efficiency is evaluated based on a promising structure that combines QPM and Cherenkov phase-matching with reduced wave-vector mismatch. Cascading processes contribute to photon conversion efficiency, and THz radiation with maximum photon conversion efficiency of 1154.2% in a 14-order cascaded Stokes process was obtained. Comparing the processes with and without Cherenkov-type radiation, with a 50-MW pump, power was boosted nearly 1.9 times for the former case. These results provide an experimental approach to high-energy THz-wave generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal

Koji Suizu, Takayuki Shibuya, Takuya Akiba, Toshihiro Tutui, Chiko Otani, and Kodo Kawase
Opt. Express 16(10) 7493-7498 (2008)

Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal

Koji Suizu, Takayuki Shibuya, Hirohisa Uchida, and Kodo Kawase
Opt. Express 18(4) 3338-3344 (2010)

References

  • View by:
  • |
  • |
  • |

  1. G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
    [Crossref] [PubMed]
  2. F. C. Cruz, D. L. Maser, T. Johnson, G. Ycas, A. Klose, F. R. Giorgetta, I. Coddington, and S. A. Diddams, “Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy,” Opt. Express 23(20), 26814–26824 (2015).
    [Crossref] [PubMed]
  3. Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
    [Crossref]
  4. D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
    [Crossref]
  5. P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
    [Crossref]
  6. Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
    [Crossref] [PubMed]
  7. F. Ahr, S. W. Jolly, N. H. Matlis, S. Carbajo, T. Kroh, K. Ravi, D. N. Schimpf, J. Schulte, H. Ishizuki, T. Taira, A. R. Maier, and F. X. Kärtner, “Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate,” Opt. Lett. 42(11), 2118–2121 (2017).
    [Crossref] [PubMed]
  8. A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
    [Crossref] [PubMed]
  9. D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
    [Crossref] [PubMed]
  10. M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett. 29(17), 2046–2048 (2004).
    [Crossref] [PubMed]
  11. K. Ravi, M. Hemmer, G. Cirmi, F. Reichert, D. N. Schimpf, O. D. Mücke, and F. X. Kärtner, “Cascaded parametric amplification for highly efficient terahertz generation,” Opt. Lett. 41(16), 3806–3809 (2016).
    [Crossref] [PubMed]
  12. M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26(10), 12536–12546 (2018).
    [Crossref] [PubMed]
  13. P. A. Cherenkov, “Visible glow of pure liquids under gamma-irradiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).
  14. K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010).
    [Crossref] [PubMed]
  15. P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, “Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation,” J. Lightwave Technol. 31(15), 2508–2514 (2013).
    [Crossref]
  16. G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
    [Crossref]
  17. J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).
  18. K. Ravi, D. N. Schimpf, and F. X. Kärtner, “Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate,” Opt. Express 24(22), 25582–25607 (2016).
    [Crossref] [PubMed]
  19. K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
    [Crossref]
  20. H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
    [Crossref]
  21. R. L. Aggarwal and B. Lax, “Optical mixing of CO2 lasers in the far-infrared,” Top. Appl. Phys. 16, 19–80 (1977).
    [Crossref]
  22. Z. Rao, Theoretical and experimental research on collinear different frequency generation THz with CO2 laser (Huazhong University of Science and Technology, 2012).
  23. J. Yao, Nonlinear optical frequency conversion and laser tunable technology (Science Press, 1995), Chap. 5, pp. 193–205.
  24. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
    [Crossref]
  25. G. Norris and G. McConnell, “Relaxed damage threshold intensity conditions and nonlinear increase in the conversion efficiency of an optical parametric oscillator using a bi-directional pump geometry,” Opt. Express 18(5), 3993–3999 (2010).
    [Crossref] [PubMed]
  26. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2009).
  27. L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]

2018 (6)

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref] [PubMed]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
[Crossref] [PubMed]

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26(10), 12536–12546 (2018).
[Crossref] [PubMed]

J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).

2017 (5)

G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
[Crossref]

F. Ahr, S. W. Jolly, N. H. Matlis, S. Carbajo, T. Kroh, K. Ravi, D. N. Schimpf, J. Schulte, H. Ishizuki, T. Taira, A. R. Maier, and F. X. Kärtner, “Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate,” Opt. Lett. 42(11), 2118–2121 (2017).
[Crossref] [PubMed]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

2016 (4)

2015 (1)

2013 (1)

2010 (2)

2007 (1)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

1977 (1)

R. L. Aggarwal and B. Lax, “Optical mixing of CO2 lasers in the far-infrared,” Top. Appl. Phys. 16, 19–80 (1977).
[Crossref]

1934 (1)

P. A. Cherenkov, “Visible glow of pure liquids under gamma-irradiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

Aggarwal, R. L.

R. L. Aggarwal and B. Lax, “Optical mixing of CO2 lasers in the far-infrared,” Top. Appl. Phys. 16, 19–80 (1977).
[Crossref]

Ahr, F.

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Borri, S.

Bowers, J. E.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Calendron, A.-L.

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26(10), 12536–12546 (2018).
[Crossref] [PubMed]

G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
[Crossref]

Çankaya, H.

M. Hemmer, G. Cirmi, K. Ravi, F. Reichert, F. Ahr, L. Zapata, O. D. Mücke, A.-L. Calendron, H. Çankaya, D. Schimpf, N. H. Matlis, and F. X. Kärtner, “Cascaded interactions mediated by terahertz radiation,” Opt. Express 26(10), 12536–12546 (2018).
[Crossref] [PubMed]

G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
[Crossref]

Carbajo, S.

Carlson, D. R.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
[Crossref] [PubMed]

Chang, L.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Chen, J.-Y.

Cherenkov, P. A.

P. A. Cherenkov, “Visible glow of pure liquids under gamma-irradiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

Cirmi, G.

Clivati, C.

Coddington, I.

Cronin-Golomb, M.

Cruz, F. C.

D’Ambrosio, D.

Diddams, S. A.

Feng, H.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

Feng, J.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Giorgetta, F. R.

Guo, J.

He, Y.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Hebling, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Hemmer, M.

Hickstein, D. D.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
[Crossref] [PubMed]

Huang, J.

J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).

Huang, Y.-P.

Insero, G.

Ishizuki, H.

Johnson, T.

Jolly, S. W.

Kärtner, F. X.

Kawase, K.

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010).
[Crossref] [PubMed]

Kerber, G. C.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Klose, A.

Kowligy, A.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Kowligy, A. S.

Kroh, T.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

L’huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Lax, B.

R. L. Aggarwal and B. Lax, “Optical mixing of CO2 lasers in the far-infrared,” Top. Appl. Phys. 16, 19–80 (1977).
[Crossref]

Li, Y.

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Li, Z.

Lind, A.

Liu, H.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Liu, P.

Maier, A. R.

Maser, D. L.

Matlis, N. H.

McConnell, G.

Minami, T.

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

Mücke, O. D.

Nader, N.

Natale, P.

Nie, M.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2009).

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Norris, G.

Okano, H.

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

Oota, K.

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

Pálfalvi, L.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Papp, S. B.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
[Crossref] [PubMed]

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Péter, Á.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polgár, K.

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Rao, Z.

J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).

Z. Rao, Theoretical and experimental research on collinear different frequency generation THz with CO2 laser (Huazhong University of Science and Technology, 2012).

Ravi, K.

Reichert, F.

Santambrogio, G.

Schimpf, D.

Schimpf, D. N.

Schulte, J.

Schunemann, P. G.

Shi, J.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Shi, W.

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Shibuya, T.

Srinivasan, K.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Sua, Y. M.

Suizu, K.

Taira, T.

Takeya, K.

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

Tang, L.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Teng, B.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

Timmers, H.

Tripathi, S. R.

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

Tsang, Y. H.

Uchida, H.

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

K. Suizu, T. Shibuya, H. Uchida, and K. Kawase, “Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal,” Opt. Express 18(4), 3338–3344 (2010).
[Crossref] [PubMed]

Wang, Y.

Westly, D.

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Wu, Y.

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Xie, F.

J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).

Xu, D.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, “Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation,” J. Lightwave Technol. 31(15), 2508–2514 (2013).
[Crossref]

Yan, C.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Yan, D.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

Yao, J.

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

D. Yan, Y. Wang, D. Xu, P. Liu, C. Yan, J. Shi, H. Liu, Y. He, L. Tang, J. Feng, J. Guo, W. Shi, K. Zhong, Y. H. Tsang, and J. Yao, “High-average-power, high-repetition-rate tunable terahertz difference frequency generation with GaSe crystal pumped by 2 μm dual-wavelength intracavity KTP optical parametric oscillator,” Photon. Res. 5(2), 82–87 (2017).
[Crossref]

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

P. Liu, D. Xu, H. Yu, H. Zhang, Z. Li, K. Zhong, Y. Wang, and J. Yao, “Coupled-mode theory for Cherenkov-type guided-wave terahertz generation via cascaded difference frequency generation,” J. Lightwave Technol. 31(15), 2508–2514 (2013).
[Crossref]

J. Yao, Nonlinear optical frequency conversion and laser tunable technology (Science Press, 1995), Chap. 5, pp. 193–205.

Ycas, G.

Yu, H.

Zapata, L.

Zapata, L. E.

G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
[Crossref]

Zhang, G.

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Zhang, H.

Zhang, X.

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Zhong, K.

Zondy, J.-J.

APL Photonics (1)

K. Takeya, T. Minami, H. Okano, S. R. Tripathi, and K. Kawase, “Enhanced Cherenkov phase matching terahertz wave generation via a magnesium oxide doped lithium niobate ridged waveguide crystal,” APL Photonics 2(1), 016102 (2017).
[Crossref]

Appl. Phys. B (2)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L’huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B 86(1), 111–115 (2007).
[Crossref]

Y. He, Y. Wang, D. Xu, M. Nie, C. Yan, L. Tang, J. Shi, J. Feng, D. Yan, H. Liu, B. Teng, H. Feng, and J. Yao, “High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation,” Appl. Phys. B 124(1), 16 (2018).
[Crossref]

Appl. Phys. Express (1)

H. Uchida, K. Oota, T. Minami, K. Takeya, and K. Kawase, “Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4′-stilbazolium tosylate crystal,” Appl. Phys. Express 10(6), 062601 (2017).
[Crossref]

Appl. Phys. Lett. (1)

P. Liu, X. Zhang, C. Yan, D. Xu, Y. Li, W. Shi, G. Zhang, X. Zhang, J. Yao, and Y. Wu, “Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5,5-dime-thylcyclohex-2-enylidene)malononitrile,” Appl. Phys. Lett. 108(1), 011104 (2016).
[Crossref]

Dokl. Akad. Nauk SSSR (1)

P. A. Cherenkov, “Visible glow of pure liquids under gamma-irradiation,” Dokl. Akad. Nauk SSSR 2, 451 (1934).

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, and K. Polgár, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. B (1)

G. Cirmi, M. Hemmer, K. Ravi, F. Reichert, L. E. Zapata, A.-L. Calendron, H. Çankaya, F. Ahr, O. D. Mücke, N. H. Matlis, and F. X. Kärtner, “Cascaded second-order processes for the efficient generation of narrowband terahertz radiation,” J. Phys. B 50(4), 044002 (2017).
[Crossref]

J. Terahertz Sci. Electron. Inf. Technol. (1)

J. Huang, Z. Rao, and F. Xie, “Cascaded difference-frequency generation for THz in GaP,GaAs and PPLN crystals,” J. Terahertz Sci. Electron. Inf. Technol. 16(4), 576 (2018).

Opt. Express (5)

Opt. Lett. (6)

G. Insero, C. Clivati, D. D’Ambrosio, P. Natale, G. Santambrogio, P. G. Schunemann, J.-J. Zondy, and S. Borri, “Difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide crystals,” Opt. Lett. 41(21), 5114–5117 (2016).
[Crossref] [PubMed]

Y. M. Sua, J.-Y. Chen, and Y.-P. Huang, “Ultra-wideband and high-gain parametric amplification in telecom wavelengths with an optimally mode-matched PPLN waveguide,” Opt. Lett. 43(12), 2965–2968 (2018).
[Crossref] [PubMed]

F. Ahr, S. W. Jolly, N. H. Matlis, S. Carbajo, T. Kroh, K. Ravi, D. N. Schimpf, J. Schulte, H. Ishizuki, T. Taira, A. R. Maier, and F. X. Kärtner, “Narrowband terahertz generation with chirped-and-delayed laser pulses in periodically poled lithium niobate,” Opt. Lett. 42(11), 2118–2121 (2017).
[Crossref] [PubMed]

A. S. Kowligy, A. Lind, D. D. Hickstein, D. R. Carlson, H. Timmers, N. Nader, F. C. Cruz, G. Ycas, S. B. Papp, and S. A. Diddams, “Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides,” Opt. Lett. 43(8), 1678–1681 (2018).
[Crossref] [PubMed]

M. Cronin-Golomb, “Cascaded nonlinear difference-frequency generation of enhanced terahertz wave production,” Opt. Lett. 29(17), 2046–2048 (2004).
[Crossref] [PubMed]

K. Ravi, M. Hemmer, G. Cirmi, F. Reichert, D. N. Schimpf, O. D. Mücke, and F. X. Kärtner, “Cascaded parametric amplification for highly efficient terahertz generation,” Opt. Lett. 41(16), 3806–3809 (2016).
[Crossref] [PubMed]

Photon. Res. (1)

Phys. Rev. Lett. (1)

D. D. Hickstein, G. C. Kerber, D. R. Carlson, L. Chang, D. Westly, K. Srinivasan, A. Kowligy, J. E. Bowers, S. A. Diddams, and S. B. Papp, “Quasi-phase-matched supercontinuum-generation in photonic waveguides,” Phys. Rev. Lett. 120(5), 053903 (2018).
[Crossref] [PubMed]

Top. Appl. Phys. (1)

R. L. Aggarwal and B. Lax, “Optical mixing of CO2 lasers in the far-infrared,” Top. Appl. Phys. 16, 19–80 (1977).
[Crossref]

Other (3)

Z. Rao, Theoretical and experimental research on collinear different frequency generation THz with CO2 laser (Huazhong University of Science and Technology, 2012).

J. Yao, Nonlinear optical frequency conversion and laser tunable technology (Science Press, 1995), Chap. 5, pp. 193–205.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer Science & Business Media, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of THz generation in PPLN crystal based on Cherenkov-type QPM cascaded DFG.
Fig. 2
Fig. 2 Schematic of THz generation by the combination of cascaded DFG, QPM, and Cherenkov-type processes.
Fig. 3
Fig. 3 Wave-vector mismatch and inversion periods in cascaded DFG process via Cherenkov-type QPM in a PPLN crystal.
Fig. 4
Fig. 4 THz power in PPLN crystal versus propagation distance for cascading order n = 2, 4, and 7.
Fig. 5
Fig. 5 THz radiation with a maximum photon conversion efficiency in PPLN crystal versus propagation distance. Frequencies of 0.5, 1, and 1.5 THz can be generated as THz waves.
Fig. 6
Fig. 6 Influence of cascading effect and ChPM on generated photon conversion efficiency in PPLN.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Λ= 2π k Λ .
Δ k j = j k T 2 -( k j - k j+1 ) 2 - k Λ .
cos θ c = λ T ( k j - k j+1 ) 2π n T ,
d A 1 dz = α 1 2 A 1 i ω 1 d 33 c n 1 G j A 2 A T e iΔ k j z d A 2 dz = α 2 2 A 2 i ω 2 d 33 c n 2 G j A 1 A T * e iΔ k j z . d A T dz = α T 2 A T i ω T d 33 c n T G j A 1 A 2 * e iΔ k j z
G j =| 2 mπ |,m= odd number,
G j =0, m= even number,
d A T dz = α T 2 A T 2 π i ω T d 33 c n T G j j=- + A j A j+1 * e -iΔ k j z ,
d A j dz = α j 2 A n 2 π i ω j d 33 c n j G j [ A j-1 A T * e -iΔ k j-1 z + A j+1 A T e iΔ k j z ].
η= n P T,n λ T P 1 λ 1 ×100% = n λ T λ 1 ( μ 0 ε 0 ) 1 2 8 ω T 2 d 33 2 L 2 π 2 n 1,n n 2,n n T c 2 G j ( P 2,n A ) e α T L 1+ e ΔαL 2 e 1 2 ΔαL cos(Δ k j L) (Δ k j L) 2 + ( 1 2 ΔαL) 2 ,
n j 2 =R+2.605× 10 7 T 2 + 0.970× 10 5 +2.7× 10 2 T 2 λ j 2 (2.01× 10 2 +5.4× 10 5 T 2 ) 2 2.24× 10 8 λ j 2 ,
n T =5.03330.00031× 1 λ T × 10 4 +0.000057× ( 1 λ T × 10 4 ) 2 0.0000002× ( 1 λ T × 10 4 ) 3 ,

Metrics