Abstract

We present a new custom-built cell for high-resolution absorption spectroscopy of hazardous gases. The use of an aluminum light-pipe enables sensitive detection due to the small tube diameter and an increased particle density in the interaction volume for a limited analyte amount in the cell, while avoiding additional surfaces such as mirrors. To demonstrate this, we have used the cell to measure tritiated water isotopologues (HTO and traces of T2O) for which spectroscopic data is scarce, due to the challenge of performing spectroscopy of these highly radio-chemical aggressive substances. For this purpose, the new cell also features the efficient inline-production of tritiated water. In this paper we present the concept of the light-pipe cell and demonstrate its performance with a high-resolution absorption spectrum of gaseous HTO generated inside of this cell.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Water-vapor isotope ratio measurements in air with a quantum-cascade laser spectrometer

L. Joly, V. Zéninari, B. Parvitte, D. Courtois, and G. Durry
Opt. Lett. 31(2) 143-145 (2006)

References

  • View by:
  • |
  • |
  • |

  1. H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997).
    [Crossref]
  2. N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
    [Crossref]
  3. O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
    [Crossref] [PubMed]
  4. G. P. Kincaid Jun and E. R. Ibert, “Tritium production from nitrogen in fission reactors,” Nature 226, 139 (1970).
    [Crossref]
  5. J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
    [Crossref]
  6. M. B. Kalinowski, “Uncertainty and range of alternatives in estimating tritium emissions from proposed fusion power reactors and their radiological impact,” J. Fusion Energ. 12, 157–161 (1993).
    [Crossref]
  7. M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
    [Crossref]
  8. P. P. Cherrier and J. Reid, “High-sensitivity detection of tritiated water vapour using tunable diode lasers,” Nucl. Instrum. Meth. A 257, 412–416 (1987).
    [Crossref]
  9. K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
    [Crossref]
  10. C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
    [Crossref]
  11. H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
    [Crossref]
  12. I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
    [Crossref]
  13. S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
    [Crossref]
  14. S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
    [Crossref]
  15. O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
    [Crossref]
  16. A. Fayt and G. Steenbeckeliers, “Determination of the ν1 and ν3 vibrational levels of the radioactive water molecule HTO by high resolution infrared spectroscopy and calculation of rotation constants of the fundamental state,” C. R. Acad. Sci. Paris Ser. B 275, 459–460 (1972).
  17. M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
    [Crossref]
  18. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995).
    [Crossref]
  19. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  20. P. Souers, Hydrogen Properties for Fusion Energy (University of California Press, 1986).
  21. D. MacMahon, “Half-life evaluations for 3H, 90Sr, and 90Y,” Appl. Radiat. Isot. 64, 1417–1419 (2006).
    [Crossref] [PubMed]
  22. J. Orphal and A. A. Ruth, “High-resolution fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16, 19232–19243 (2008).
    [Crossref]
  23. S. Chandran and R. Varma, “Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane,” Spectrochim. Acta A 153, 704–708 (2016).
    [Crossref]
  24. M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
    [Crossref]
  25. P. W. J. Yang, E. L. Ethridge, J. L. Lane, and P. R. Griffiths, “Optimization of GC/FT-IR measurements i: Construction of light-pipes,” Appl. Spectrosc. 38, 813–816 (1984).
    [Crossref]
  26. P. W. J. Yang and P. R. Griffiths, “Optimization of GC/FT-IR measurements ii: Optical design,” Appl. Spectrosc. 38, 816–821 (1984).
    [Crossref]
  27. D. F. Gurka and S. M. Pyle, “Qualitative and quantitative environmental analysis by capillary column gas chromatography/lightpipe Fourier-transform infrared spectrometry,” Environ. Sci. & Technol. 22, 963–967 (1988).
    [Crossref]
  28. H. Malissa, “On the use of capillary separation columns in GC/FTIR-spectroscopy and on the quantitative evaluation of the Gram-Schmidt reconstructed chromatogram,” Fresen. Z. Anal. Chem. 316, 699–704 (1983).
    [Crossref]
  29. D. E. Johnson and J. G. Eden, “High-temperature, alkali-rare gas optical cell,” Rev. Sci. Instrum. 57, 2976–2978 (1986).
    [Crossref]
  30. F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
    [Crossref]
  31. R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
    [Crossref]
  32. F. Hase, “Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change,” Atmos. Meas. Tech. 5, 603–610 (2012).
    [Crossref]
  33. F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
    [Crossref]
  34. M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
    [Crossref]
  35. M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
    [Crossref]
  36. J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
    [Crossref]

2019 (1)

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

2016 (2)

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

S. Chandran and R. Varma, “Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane,” Spectrochim. Acta A 153, 704–708 (2016).
[Crossref]

2015 (1)

C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
[Crossref]

2013 (3)

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

2012 (1)

F. Hase, “Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change,” Atmos. Meas. Tech. 5, 603–610 (2012).
[Crossref]

2011 (2)

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

2008 (2)

M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
[Crossref]

J. Orphal and A. A. Ruth, “High-resolution fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16, 19232–19243 (2008).
[Crossref]

2006 (1)

D. MacMahon, “Half-life evaluations for 3H, 90Sr, and 90Y,” Appl. Radiat. Isot. 64, 1417–1419 (2006).
[Crossref] [PubMed]

1997 (1)

H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997).
[Crossref]

1996 (1)

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

1995 (1)

1993 (1)

M. B. Kalinowski, “Uncertainty and range of alternatives in estimating tritium emissions from proposed fusion power reactors and their radiological impact,” J. Fusion Energ. 12, 157–161 (1993).
[Crossref]

1991 (1)

O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
[Crossref]

1989 (1)

M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
[Crossref]

1988 (2)

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

D. F. Gurka and S. M. Pyle, “Qualitative and quantitative environmental analysis by capillary column gas chromatography/lightpipe Fourier-transform infrared spectrometry,” Environ. Sci. & Technol. 22, 963–967 (1988).
[Crossref]

1987 (2)

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

P. P. Cherrier and J. Reid, “High-sensitivity detection of tritiated water vapour using tunable diode lasers,” Nucl. Instrum. Meth. A 257, 412–416 (1987).
[Crossref]

1986 (2)

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

D. E. Johnson and J. G. Eden, “High-temperature, alkali-rare gas optical cell,” Rev. Sci. Instrum. 57, 2976–2978 (1986).
[Crossref]

1984 (4)

P. W. J. Yang, E. L. Ethridge, J. L. Lane, and P. R. Griffiths, “Optimization of GC/FT-IR measurements i: Construction of light-pipes,” Appl. Spectrosc. 38, 813–816 (1984).
[Crossref]

P. W. J. Yang and P. R. Griffiths, “Optimization of GC/FT-IR measurements ii: Optical design,” Appl. Spectrosc. 38, 816–821 (1984).
[Crossref]

H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
[Crossref]

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

1983 (1)

H. Malissa, “On the use of capillary separation columns in GC/FTIR-spectroscopy and on the quantitative evaluation of the Gram-Schmidt reconstructed chromatogram,” Fresen. Z. Anal. Chem. 316, 699–704 (1983).
[Crossref]

1973 (1)

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

1972 (3)

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

A. Fayt and G. Steenbeckeliers, “Determination of the ν1 and ν3 vibrational levels of the radioactive water molecule HTO by high resolution infrared spectroscopy and calculation of rotation constants of the fundamental state,” C. R. Acad. Sci. Paris Ser. B 275, 459–460 (1972).

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1970 (1)

G. P. Kincaid Jun and E. R. Ibert, “Tritium production from nitrogen in fission reactors,” Nature 226, 139 (1970).
[Crossref]

Barefield, J.

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
[Crossref]

Blumenstock, T.

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

Bray, C.

C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
[Crossref]

Cannon, J. B.

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

Carpenter, R. A.

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

Chandran, S.

S. Chandran and R. Varma, “Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane,” Spectrochim. Acta A 153, 704–708 (2016).
[Crossref]

Cherepanov, V.

O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
[Crossref]

Cherrier, P. P.

P. P. Cherrier and J. Reid, “High-sensitivity detection of tritiated water vapour using tunable diode lasers,” Nucl. Instrum. Meth. A 257, 412–416 (1987).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Cope, S.

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

De Lucia, F. C.

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

De Mazière, M.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Desmet, F.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Dohe, S.

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

Down, M. J.

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

Drouin, B. J.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Easterly, C. E.

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

Eden, J. G.

D. E. Johnson and J. G. Eden, “High-temperature, alkali-rare gas optical cell,” Rev. Sci. Instrum. 57, 2976–2978 (1986).
[Crossref]

Enokida, T.

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Ethridge, E. L.

Fayt, A.

A. Fayt and G. Steenbeckeliers, “Determination of the ν1 and ν3 vibrational levels of the radioactive water molecule HTO by high resolution infrared spectroscopy and calculation of rotation constants of the fundamental state,” C. R. Acad. Sci. Paris Ser. B 275, 459–460 (1972).

Feist, D. G.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Fry, H.

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
[Crossref]

Gailar, N. M.

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

Gisi, M.

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

Gordy, W.

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

Griffiths, P. R.

Gurka, D. F.

D. F. Gurka and S. M. Pyle, “Qualitative and quantitative environmental analysis by capillary column gas chromatography/lightpipe Fourier-transform infrared spectrometry,” Environ. Sci. & Technol. 22, 963–967 (1988).
[Crossref]

Hansen, W. N.

M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
[Crossref]

Hara, M.

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Hase, F.

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

F. Hase, “Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change,” Atmos. Meas. Tech. 5, 603–610 (2012).
[Crossref]

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

Hatano, Y.

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Heikkinen, P.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Helminger, P.

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

Ibert, E. R.

G. P. Kincaid Jun and E. R. Ibert, “Tritium production from nitrogen in fission reactors,” Nature 226, 139 (1970).
[Crossref]

Iio, D.

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Johnson, D. E.

D. E. Johnson and J. G. Eden, “High-temperature, alkali-rare gas optical cell,” Rev. Sci. Instrum. 57, 2976–2978 (1986).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Jones, L.

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
[Crossref]

Kalinowski, M. B.

M. B. Kalinowski, “Uncertainty and range of alternatives in estimating tritium emissions from proposed fusion power reactors and their radiological impact,” J. Fusion Energ. 12, 157–161 (1993).
[Crossref]

Kanesaka, I.

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

Kawai, K.

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

Kiel, M.

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

Kincaid Jun, G. P.

G. P. Kincaid Jun and E. R. Ibert, “Tritium production from nitrogen in fission reactors,” Nature 226, 139 (1970).
[Crossref]

Kirner, O.

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

Kobayashi, K.

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Kyuberis, A. A.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

Lane, J. L.

Lodi, L.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

MacMahon, D.

D. MacMahon, “Half-life evaluations for 3H, 90Sr, and 90Y,” Appl. Radiat. Isot. 64, 1417–1419 (2006).
[Crossref] [PubMed]

Malikova, A.

O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
[Crossref]

Malissa, H.

H. Malissa, “On the use of capillary separation columns in GC/FTIR-spectroscopy and on the quantitative evaluation of the Gram-Schmidt reconstructed chromatogram,” Fresen. Z. Anal. Chem. 316, 699–704 (1983).
[Crossref]

Morgan, H. W.

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

Orphal, J.

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

J. Orphal and A. A. Ruth, “High-resolution fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source,” Opt. Express 16, 19232–19243 (2008).
[Crossref]

Ovsyannikov, R. I.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

Pailloux, A.

C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
[Crossref]

Partridge, H.

H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997).
[Crossref]

Perlado, J.

M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
[Crossref]

Plumeri, S.

C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
[Crossref]

Polyansky, O. L.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

Pyle, S. M.

D. F. Gurka and S. M. Pyle, “Qualitative and quantitative environmental analysis by capillary column gas chromatography/lightpipe Fourier-transform infrared spectrometry,” Environ. Sci. & Technol. 22, 963–967 (1988).
[Crossref]

Rakic, A. D.

Reid, J.

P. P. Cherrier and J. Reid, “High-sensitivity detection of tritiated water vapour using tunable diode lasers,” Nucl. Instrum. Meth. A 257, 412–416 (1987).
[Crossref]

Reinking, J.

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

Rettinger, M.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Robinson, J.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Roehl, C. M.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Russell, D.

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

Ruth, A. A.

Schlösser, M.

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

Schneider, M.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Schwenke, D. W.

H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997).
[Crossref]

Sedano, L.

M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
[Crossref]

Sherlock, V.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Souers, P.

P. Souers, Hydrogen Properties for Fusion Energy (University of California Press, 1986).

Staats, P. A.

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

Steenbeckeliers, G.

A. Fayt and G. Steenbeckeliers, “Determination of the ν1 and ν3 vibrational levels of the radioactive water molecule HTO by high resolution infrared spectroscopy and calculation of rotation constants of the fundamental state,” C. R. Acad. Sci. Paris Ser. B 275, 459–460 (1972).

Sueur, C. L.

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

Sussmann, R.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Takeuchi, T.

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

Talbot, J. B.

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

Té, Y.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Tennyson, J.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

Toon, G. C.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Tsuchida, M.

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

Ulenikov, O.

O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
[Crossref]

Varma, R.

S. Chandran and R. Varma, “Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane,” Spectrochim. Acta A 153, 704–708 (2016).
[Crossref]

Velarde, M.

M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
[Crossref]

Warneke, T.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Watson, J. S.

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

Weinzierl, C.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Wennberg, P. O.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Wunch, D.

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

Yamada, Y.

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Yang, P. W. J.

Yin, M.

M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
[Crossref]

Yu, B.-Z.

M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
[Crossref]

Zobov, N. F.

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

Appl. Opt. (1)

Appl. Radiat. Isot. (1)

D. MacMahon, “Half-life evaluations for 3H, 90Sr, and 90Y,” Appl. Radiat. Isot. 64, 1417–1419 (2006).
[Crossref] [PubMed]

Appl. Spectrosc. (2)

Atmos. Meas. Tech. (4)

F. Hase, “Improved instrumental line shape monitoring for the ground-based, high-resolution FTIR spectrometers of the Network for the Detection of Atmospheric Composition Change,” Atmos. Meas. Tech. 5, 603–610 (2012).
[Crossref]

F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl, “Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring,” Atmos. Meas. Tech. 6, 3527–3537 (2013).
[Crossref]

M. Kiel, F. Hase, T. Blumenstock, and O. Kirner, “Comparison of XCO abundances from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change measured in Karlsruhe,” Atmos. Meas. Tech. 9, 2223–2239 (2016).
[Crossref]

M. Gisi, F. Hase, S. Dohe, and T. Blumenstock, “Camtracker: a new camera controlled high precision solar tracker system for FTIR-spectrometers,” Atmos. Meas. Tech. 4, 47–54 (2011).
[Crossref]

C. R. Acad. Sci. Paris Ser. B (1)

A. Fayt and G. Steenbeckeliers, “Determination of the ν1 and ν3 vibrational levels of the radioactive water molecule HTO by high resolution infrared spectroscopy and calculation of rotation constants of the fundamental state,” C. R. Acad. Sci. Paris Ser. B 275, 459–460 (1972).

Chem. Phys. Lett. (1)

N. F. Zobov, O. L. Polyansky, C. L. Sueur, and J. Tennyson, “Vibration-rotation levels of water beyond the Born-Oppenheimer approximation,” Chem. Phys. Lett. 260, 381–387 (1996).
[Crossref]

Environ. Sci. & Technol. (1)

D. F. Gurka and S. M. Pyle, “Qualitative and quantitative environmental analysis by capillary column gas chromatography/lightpipe Fourier-transform infrared spectrometry,” Environ. Sci. & Technol. 22, 963–967 (1988).
[Crossref]

Fresen. Z. Anal. Chem. (1)

H. Malissa, “On the use of capillary separation columns in GC/FTIR-spectroscopy and on the quantitative evaluation of the Gram-Schmidt reconstructed chromatogram,” Fresen. Z. Anal. Chem. 316, 699–704 (1983).
[Crossref]

Fusion Sci. Technol. (2)

M. Velarde, L. Sedano, and J. Perlado, “Dosimetric impact evaluation of primary coolant chemistry of the internal tritium breeding cycle of a fusion reactor DEMO,” Fusion Sci. Technol. 54, 122–126 (2008).
[Crossref]

K. Kobayashi, T. Enokida, D. Iio, Y. Yamada, M. Hara, and Y. Hatano, “Near-infrared spectroscopy of tritiated water,” Fusion Sci. Technol. 60, 941–943 (2011).
[Crossref]

Fusion Technol. (1)

J. S. Watson, C. E. Easterly, J. B. Cannon, and J. B. Talbot, “Environmental effects of fusion power plants. part ii: Tritium effluents,” Fusion Technol. 12, 354–363 (1987).
[Crossref]

J. Chem. Phys. (1)

H. Partridge and D. W. Schwenke, “The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data,” J. Chem. Phys. 106, 4618–4639 (1997).
[Crossref]

J. Fusion Energ. (1)

M. B. Kalinowski, “Uncertainty and range of alternatives in estimating tritium emissions from proposed fusion power reactors and their radiological impact,” J. Fusion Energ. 12, 157–161 (1993).
[Crossref]

J. Mol. Spectrosc. (7)

M. J. Down, J. Tennyson, M. Hara, Y. Hatano, and K. Kobayashi, “Analysis of a tritium enhanced water spectrum between 7200 and 7245 cm−1 using new variational calculations,” J. Mol. Spectrosc. 289, 35–40 (2013).
[Crossref]

H. Fry, L. Jones, and J. Barefield, “Observation and analysis of fundamental bending mode of T2O,” J. Mol. Spectrosc. 103, 41–55 (1984).
[Crossref]

I. Kanesaka, M. Tsuchida, K. Kawai, and T. Takeuchi, “The IR spectrum of T218O,” J. Mol. Spectrosc. 104, 405–413 (1984).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the fundamental asymmetric stretching mode of T2O ,” J. Mol. Spectrosc. 120, 311–316 (1986).
[Crossref]

S. Cope, D. Russell, H. Fry, L. Jones, and J. Barefield, “Analysis of the ν1 fundamental mode of HTO,” J. Mol. Spectrosc. 127, 464–471 (1988).
[Crossref]

O. Ulenikov, V. Cherepanov, and A. Malikova, “On analysis of the ν2 band of the HTO molecule,” J. Mol. Spectrosc. 146, 97–103 (1991).
[Crossref]

R. A. Carpenter, N. M. Gailar, H. W. Morgan, and P. A. Staats, “The ν2 fundamental vibration-rotation band of T2O,” J. Mol. Spectrosc. 44, 197–205 (1972).
[Crossref]

J. Phys. Chem. A (1)

O. L. Polyansky, R. I. Ovsyannikov, A. A. Kyuberis, L. Lodi, J. Tennyson, and N. F. Zobov, “Calculation of rotation–vibration energy levels of the water molecule with near-experimental accuracy based on an ab initio potential energy surface,” J. Phys. Chem. A 117, 9633–9643 (2013). PMID: .
[Crossref] [PubMed]

J. Quant. Spectrosc. Ra. (1)

J. Reinking, M. Schlösser, F. Hase, and J. Orphal, “First high-resolution spectrum and line-by-line analysis of the 2ν2 band of hto around 3.8 microns,” J. Quant. Spectrosc. Ra. 230, 61–64 (2019).
[Crossref]

Nature (1)

G. P. Kincaid Jun and E. R. Ibert, “Tritium production from nitrogen in fission reactors,” Nature 226, 139 (1970).
[Crossref]

Nucl. Instrum. Meth. A (2)

C. Bray, A. Pailloux, and S. Plumeri, “Tritiated water detection in the 2.17μm spectral region by cavity ring down spectroscopy,” Nucl. Instrum. Meth. A 789, 43–49 (2015).
[Crossref]

P. P. Cherrier and J. Reid, “High-sensitivity detection of tritiated water vapour using tunable diode lasers,” Nucl. Instrum. Meth. A 257, 412–416 (1987).
[Crossref]

Opt. Express (1)

Phys. Rev. A (1)

F. C. De Lucia, P. Helminger, W. Gordy, H. W. Morgan, and P. A. Staats, “Millimeter- and submillimeter-wavelength spectrum and molecular constants of T2O,” Phys. Rev. A 8, 2785–2791 (1973).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Proc. SPIE (1)

M. Yin, B.-Z. Yu, and W. N. Hansen, “The optical design and application of light pipe systems in FTIR spectrometer,” Proc. SPIE 1145, 451–452 (1989).
[Crossref]

Rev. Sci. Instrum. (1)

D. E. Johnson and J. G. Eden, “High-temperature, alkali-rare gas optical cell,” Rev. Sci. Instrum. 57, 2976–2978 (1986).
[Crossref]

Spectrochim. Acta A (1)

S. Chandran and R. Varma, “Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-dioxane,” Spectrochim. Acta A 153, 704–708 (2016).
[Crossref]

Other (1)

P. Souers, Hydrogen Properties for Fusion Energy (University of California Press, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (Top) Ro-vibrational spectrum of the HT16O molecule. The line positions and intensities are adopted from the Tomsk variational calculation database (http://spectra.iao.ru/). Existing spectroscopic studies of different rovibrational bands are indicated. FTIR studies: a) Ulenikov [15], b) Cope [14], c) Fayt [16]. Laser spectrometer studies: α) Cherrier [8], β) Bray [10], γ Down [17]. The x symbol indicates bands which can be observed by high-resolution FTIR. (Bottom) Reflectivity of our new light-pipe cell material aluminum [18] (and gold [19]) and the transmission through sapphire (from Thorlabs Inc.) in the wavelength range relevant for FTIR studies of tritiated water isotopologues.
Fig. 2
Fig. 2 Sketch of the tritium-compatible light-pipe cell. Center: Explosion sketch of the custom-built optical window sealing.
Fig. 3
Fig. 3 (Top) Sketch of the experimental setup of the light pipe cell installed into the IMK-ASF FTIR spectrometer setup. Adapted to [35]. (Bottom) Picture of the setup (the cell is indicated in a blue contour).
Fig. 4
Fig. 4 (Top left): The experimentally measured 2ν1 band of HTO. (Bottom left) Simulated spectrum by utilizing data from the Tomsk variational calculation database. (Right) Zoomed in section. The individual lines are assigned according to calculations by Partridge and Schwenke as tabulated in table 1.

Tables (1)

Tables Icon

Table 1 Line Assignment, According to Partridge [1] taken from the Tomsk Database (Corrected for Natural Abundance).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e σ n .
T 2 + CuO T 2 O + Cu
T 2 O T 2 + 1 2 O 2

Metrics