Abstract

Switchable liquid crystal (LC) composites are a unique and attractive class of functional materials due to their extensive use in various applications including smart and privacy windows. Demand for developing smart windows with good switchable performance has steadily increasing in the past decades due to their importance in energy saving. Herein, we present the use of novel and highly active switchable LC composite material—octadecanol-doped LC—prepared via a facile, low-cost, and scalable process, for thermally or electrically controlled transparency windows. A systematic study of the switchable behavior reveals the formation of a reversible molecular arrangement between the LC and the octadecanol, which allows control of the transparency through scattering modulation of the device by voltage or temperature. The devices fabricated by sandwiching the LC composite material between two ITO-covered glass slides present switchable performance with high potential for cost-effective utilization in various applications, such as light shutters, smart or privacy windows.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal

Chun-Wei Chen, Alyssa N. Brigeman, Tsung-Jui Ho, and Iam Choon Khoo
Opt. Mater. Express 8(3) 691-697 (2018)

Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene

Seung-Won Oh, Jong-Min Baek, and Tae-Hoon Yoon
Opt. Express 24(23) 26575-26582 (2016)

Electric switching of visible and infrared transmission using liquid crystals co-doped with plasmonic gold nanorods and dichroic dyes

Ghadah H. Sheetah, Qingkun Liu, Bohdan Senyuk, Blaise Fleury, and Ivan. I. Smalyukh
Opt. Express 26(17) 22264-22272 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
    [Crossref] [PubMed]
  2. M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
    [Crossref] [PubMed]
  3. M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
    [Crossref] [PubMed]
  4. Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
    [Crossref] [PubMed]
  5. J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
    [Crossref]
  6. C. M. Lampert, “Chromogenic smart materials,” Mater. Today 7(3), 28–35 (2004).
    [Crossref]
  7. C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
    [Crossref]
  8. D. A. Higgins, “Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals,” Adv. Mater. 12(4), 251–264 (2000).
    [Crossref]
  9. M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
    [Crossref] [PubMed]
  10. S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
    [Crossref]
  11. Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
    [Crossref] [PubMed]
  12. J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
    [Crossref] [PubMed]
  13. S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
    [Crossref] [PubMed]
  14. S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
    [Crossref] [PubMed]
  15. M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
    [Crossref] [PubMed]
  16. T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
    [Crossref] [PubMed]
  17. Q. Liu and I. I. Smalyukh, “Liquid crystalline cellulose-based nematogels,” Sci. Adv. 3(8), e1700981 (2017).
    [Crossref] [PubMed]
  18. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express 18(16), 16745–16750 (2010).
    [Crossref] [PubMed]
  19. M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
    [Crossref] [PubMed]
  20. W. Ji, L.-Y. Shi, H. Tang, G. Sun, W. Hu, and X. Liang, “Large birefringence smectic-A liquid crystals for high contrast bistable displays,” Opt. Mater. Express 5(2), 281 (2015).
    [Crossref]
  21. D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
    [Crossref]
  22. K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
    [Crossref]
  23. H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
    [Crossref]
  24. S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
    [Crossref]
  25. A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
    [Crossref]
  26. R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
    [Crossref]
  27. I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
    [Crossref]
  28. Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
    [Crossref] [PubMed]
  29. M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
    [Crossref]
  30. C.-H. Chan, T.-Y. Wu, M.-H. Yen, C.-E. Lin, K.-T. Cheng, and C.-C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
    [Crossref] [PubMed]
  31. C.-C. Hsu, Y.-X. Chen, H.-W. Li, and J. S. Hsu, “Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film,” Opt. Express 24(7), 7063–7068 (2016).
    [Crossref] [PubMed]
  32. F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
    [Crossref]
  33. F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
    [Crossref]
  34. F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
    [Crossref] [PubMed]
  35. H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
    [Crossref] [PubMed]
  36. Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
    [Crossref]
  37. Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
    [Crossref]
  38. H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
    [Crossref]
  39. L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
    [Crossref]
  40. J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
    [Crossref]
  41. M. Mucha and E. Nastal-Grosicka, “Polymer-dispersed liquid crystal displays: switching times effect,” Proc. SPIE 3318, 435 (1998).
  42. B. Moshofsky and T. Mokari, “Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism,” Chem. Mater. 25(8), 1384–1391 (2013).
    [Crossref]
  43. G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
    [Crossref]
  44. D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
    [Crossref]
  45. B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
    [Crossref] [PubMed]
  46. E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
    [Crossref]
  47. M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).
  48. R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
    [Crossref] [PubMed]
  49. P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
    [Crossref] [PubMed]
  50. J. W. Caruthers, “On Rayleigh and Mie scattering,” J. Acoust. Soc. Am. 130(4), 2554 (2011).
    [Crossref]
  51. G. H. Vineyard, “Geometrical optics and the theory of multiple small angle scattering,” Phys. Rev. 85(4), 633–636 (1952).
    [Crossref]
  52. I. Abdulhalim, “Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects,” Liq. Cryst. 33(9), 1027–1041 (2006).
    [Crossref]
  53. C. L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals (Elsevier, 2015).
  54. A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20(11), 2071–2080 (2003).
    [Crossref] [PubMed]
  55. A. G. Borovoi, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44(7), 071208 (2005).
    [Crossref]
  56. K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
    [Crossref]
  57. H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
    [Crossref]
  58. E. A. Hovenac, “Calculation of far-field scattering from nonspherical particles using a geometrical optics approach,” Appl. Opt. 30(33), 4739–4746 (1991).
    [Crossref] [PubMed]
  59. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
    [Crossref] [PubMed]
  60. F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
    [Crossref]
  61. W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1,” Z. Naturforsch. A 14(10), 882 (1959).
    [Crossref]
  62. W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Z. Naturforsch. A 15(4), 287 (1960).
    [Crossref]
  63. P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
    [Crossref]
  64. H.-L. Yu and C.-C. Hsaio, “Comparison of different measurement methods for transmittance haze,” Metrologia 46(4), S233–S237 (2009).
    [Crossref]
  65. I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics 6(1), 061001 (2012).
    [Crossref]

2019 (1)

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

2018 (2)

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

2017 (9)

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Q. Liu and I. I. Smalyukh, “Liquid crystalline cellulose-based nematogels,” Sci. Adv. 3(8), e1700981 (2017).
[Crossref] [PubMed]

2016 (9)

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
[Crossref] [PubMed]

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

C.-C. Hsu, Y.-X. Chen, H.-W. Li, and J. S. Hsu, “Low switching voltage ZnO quantum dots doped polymer-dispersed liquid crystal film,” Opt. Express 24(7), 7063–7068 (2016).
[Crossref] [PubMed]

C.-H. Chan, T.-Y. Wu, M.-H. Yen, C.-E. Lin, K.-T. Cheng, and C.-C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
[Crossref] [PubMed]

2015 (5)

W. Ji, L.-Y. Shi, H. Tang, G. Sun, W. Hu, and X. Liang, “Large birefringence smectic-A liquid crystals for high contrast bistable displays,” Opt. Mater. Express 5(2), 281 (2015).
[Crossref]

M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
[Crossref]

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

2014 (3)

S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
[Crossref]

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

2013 (1)

B. Moshofsky and T. Mokari, “Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism,” Chem. Mater. 25(8), 1384–1391 (2013).
[Crossref]

2012 (2)

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics 6(1), 061001 (2012).
[Crossref]

2011 (3)

J. W. Caruthers, “On Rayleigh and Mie scattering,” J. Acoust. Soc. Am. 130(4), 2554 (2011).
[Crossref]

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

2010 (2)

K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
[Crossref]

K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, “Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection,” Opt. Express 18(16), 16745–16750 (2010).
[Crossref] [PubMed]

2009 (1)

H.-L. Yu and C.-C. Hsaio, “Comparison of different measurement methods for transmittance haze,” Metrologia 46(4), S233–S237 (2009).
[Crossref]

2006 (2)

I. Abdulhalim, “Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects,” Liq. Cryst. 33(9), 1027–1041 (2006).
[Crossref]

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

2005 (2)

A. G. Borovoi, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44(7), 071208 (2005).
[Crossref]

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

2004 (3)

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

C. M. Lampert, “Chromogenic smart materials,” Mater. Today 7(3), 28–35 (2004).
[Crossref]

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[Crossref] [PubMed]

2003 (3)

A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20(11), 2071–2080 (2003).
[Crossref] [PubMed]

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

2002 (1)

F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
[Crossref]

2001 (1)

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

2000 (3)

D. A. Higgins, “Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals,” Adv. Mater. 12(4), 251–264 (2000).
[Crossref]

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

1998 (1)

M. Mucha and E. Nastal-Grosicka, “Polymer-dispersed liquid crystal displays: switching times effect,” Proc. SPIE 3318, 435 (1998).

1997 (1)

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

1996 (1)

1995 (1)

P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
[Crossref]

1993 (1)

S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
[Crossref]

1992 (1)

H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
[Crossref]

1991 (1)

1978 (1)

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

1960 (1)

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Z. Naturforsch. A 15(4), 287 (1960).
[Crossref]

1959 (1)

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1,” Z. Naturforsch. A 14(10), 882 (1959).
[Crossref]

1952 (1)

G. H. Vineyard, “Geometrical optics and the theory of multiple small angle scattering,” Phys. Rev. 85(4), 633–636 (1952).
[Crossref]

Abdulhalim, I.

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics 6(1), 061001 (2012).
[Crossref]

I. Abdulhalim, “Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects,” Liq. Cryst. 33(9), 1027–1041 (2006).
[Crossref]

Ábrahám, Á.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Baral, M.

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

Belyaeva, E. A.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Bi, S.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Bianco, S.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Boo, J.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Borovoi, A. G.

A. G. Borovoi, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44(7), 071208 (2005).
[Crossref]

A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A 20(11), 2071–2080 (2003).
[Crossref] [PubMed]

Bruyneel, F.

F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
[Crossref]

Bunning, T. J.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

Cai, Y.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Cannavale, A.

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

Cao, X.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Cao, Y.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Carallo, S.

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

Carter, S. A.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Caruthers, J. W.

J. W. Caruthers, “On Rayleigh and Mie scattering,” J. Acoust. Soc. Am. 130(4), 2554 (2011).
[Crossref]

Castellino, M.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Chan, C.-H.

Chen, C.-C.

Chen, Y.-X.

Cheng, K.-T.

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

C.-H. Chan, T.-Y. Wu, M.-H. Yen, C.-E. Lin, K.-T. Cheng, and C.-C. Chen, “Low power consumption and high-contrast light scattering based on polymer-dispersed liquid crystals doped with silver-coated polystyrene microspheres,” Opt. Express 24(26), 29963–29971 (2016).
[Crossref] [PubMed]

Chiang, I.-K.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Chidichimo, G.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

Cho, J. H.

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

Choe, J.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Choi, W.-K.

S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
[Crossref]

Chu, D.

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Chung, H.-J.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Cleveland, W.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Coates, D.

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Cockburn, A.

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Cong, S.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Crossland, W. A.

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Cupelli, D.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

Dai, H.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

De Benedittis, M.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

De Filpo, G.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

de Gennes, P. G.

P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
[Crossref]

De Smet, H.

F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
[Crossref]

Debije, M. G.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

Dessaud, N.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[Crossref] [PubMed]

Dierking, I.

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

Ding, X.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Dong, X.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

Drechsel, D.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Fainerman, V. B.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Fang, X.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Fazio, A.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Feng, J.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

Figueirinhas, J.

M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
[Crossref]

Fomina, E. S.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Freeny, A. E.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Fu, Y.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Fueda, K.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Fuentes, M.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Fung, E.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Gabriele, B.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Garino, N.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Gigli, G.

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

Grätzel, M.

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

Grishin, I. A.

Gui, H.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Guo, S.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Gyulai, G.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

He, B.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

He, H.

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

He, Z.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Heppke, G.

H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
[Crossref]

Higgins, D. A.

D. A. Higgins, “Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals,” Adv. Mater. 12(4), 251–264 (2000).
[Crossref]

Hiremath, U. S.

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Hollfelder, N.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Hou, S.-L.

S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
[Crossref]

Hovenac, E. A.

Hsaio, C.-C.

H.-L. Yu and C.-C. Hsaio, “Comparison of different measurement methods for transmittance haze,” Metrologia 46(4), S233–S237 (2009).
[Crossref]

Hsu, C.-C.

Hsu, J. S.

Hu, W.

Hu, X. M.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Huang, T. J.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Isokawa, N.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Iván, B.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Jain, S. C.

S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
[Crossref]

Jaisankar, S. N.

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

Jakubiak, R.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

Ji, W.

Jin, H.-J.

Jung, H.-T.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Kasza, G.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Khandelwal, H.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

Kilickiran, P.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Kim, D. H.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Kim, E. S.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Kim, J.

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

Kim, J. C.

Kim, K.-H.

Kim, M.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Kiss, É.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Kitzerow, H.

H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
[Crossref]

Krishna Prasad, S.

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

Kumar, A.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

La, T.-G.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Lakshmikumar, S. T.

S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
[Crossref]

Lampert, C. M.

C. M. Lampert, “Chromogenic smart materials,” Mater. Today 7(3), 28–35 (2004).
[Crossref]

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

Lan, Z.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Laurenti, M.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

Lee, H. Y.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Lee, J.-H.

LeGrange, J. D.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Lei, Q.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

Li, H.-H.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

Li, H.-W.

Li, K.

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Li, W.

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

Li, X.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Li, Y.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Liang, X.

Liang, Y. N.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Liang, Z.-Y.

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

Lim, H. S.

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

Lin, C.-E.

Lin, L.

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

Lin, S.-C. S.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Liou, K. N.

K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
[Crossref]

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
[Crossref] [PubMed]

Liu, C.-K.

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

Liu, J.-W.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

Liu, Q.

Q. Liu and I. I. Smalyukh, “Liquid crystalline cellulose-based nematogels,” Sci. Adv. 3(8), e1700981 (2017).
[Crossref] [PubMed]

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Liu, Y. J.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Lu, Y.-R.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

Luo, D.

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

Ma, D.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Madhuri, K. P.

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Madhuri, P. L.

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Maier, W.

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Z. Naturforsch. A 15(4), 287 (1960).
[Crossref]

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1,” Z. Naturforsch. A 14(10), 882 (1959).
[Crossref]

Malara, F.

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

Mandracci, P.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Martín-Adrados, B.

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

Martin-Palma, R. J.

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

Masutani, A.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Miller, R.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Miller, T. M.

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

Milliron, D. J.

Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
[Crossref] [PubMed]

Mitov, M.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[Crossref] [PubMed]

Mokari, T.

B. Moshofsky and T. Mokari, “Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism,” Chem. Mater. 25(8), 1384–1391 (2013).
[Crossref]

Molsen, H.

H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
[Crossref]

Monnot, A.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Morrisy, J. H.

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Moshofsky, B.

B. Moshofsky and T. Mokari, “Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism,” Chem. Mater. 25(8), 1384–1391 (2013).
[Crossref]

Mucha, M.

M. Mucha and E. Nastal-Grosicka, “Polymer-dispersed liquid crystal displays: switching times effect,” Proc. SPIE 3318, 435 (1998).

Munday, J. N.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Murali, A.

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

Murray, J.

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Nakahara, S.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Nastal-Grosicka, E.

M. Mucha and E. Nastal-Grosicka, “Polymer-dispersed liquid crystal displays: switching times effect,” Proc. SPIE 3318, 435 (1998).

Natarajan, L. V.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

Needham, B.

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

Nelles, G.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Nicoletta, F. P.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

Nouvet, E.

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[Crossref] [PubMed]

Novick, R.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

O’Neill, W.

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Oh, D. H.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Ok, J. M.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Pappu, L. M.

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

Park, K. J.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Park, K.-H.

Paustenbach, D.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Pelcovits, R.

P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
[Crossref]

Pirri, C. F.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Pivnenko, M.

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Prasad, S. K.

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Prost, J.

P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
[Crossref]

Roberts, T.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Runnerstrom, E. L.

Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
[Crossref] [PubMed]

Sakaigawa, A.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Salerno, G.

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Saupe, A.

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Z. Naturforsch. A 15(4), 287 (1960).
[Crossref]

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1,” Z. Naturforsch. A 14(10), 882 (1959).
[Crossref]

Schenning, A. P. H. J.

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

Schüller, B.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Seok, S.

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

Shen, C.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Shi, J.

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Shi, L.-Y.

Silva, M. C.

M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
[Crossref]

Smalyukh, I. I.

Q. Liu and I. I. Smalyukh, “Liquid crystalline cellulose-based nematogels,” Sci. Adv. 3(8), e1700981 (2017).
[Crossref] [PubMed]

Song, Y.

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

Sotomayor, J.

M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
[Crossref]

Su, G.-D. J.

S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
[Crossref]

Sun, G.

Szarka, G.

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Takano, Y.

K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
[Crossref]

Tang, H.

Teshima, H.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Thakur, R. S.

S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
[Crossref]

Tondiglia, V. P.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

Towle, K.

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Tu, C.-Y.

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

Ueno, M.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Vaia, R. A.

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

Van Calster, A.

F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
[Crossref]

Vineyard, G. H.

G. H. Vineyard, “Geometrical optics and the theory of multiple small angle scattering,” Phys. Rev. 85(4), 633–636 (1952).
[Crossref]

Virga, A.

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

Vollhardt, D.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Vysotsky, Y. B.

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

Wang, J.-L.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
[Crossref] [PubMed]

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Wang, Z. L.

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

Wu, T.-Y.

Xia, M.

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

Yamamoto, N.

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Yang, B.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

Yang, D.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Yang, D. K.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Yang, H.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Yang, K.

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

Yang, P.

K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
[Crossref]

P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35(33), 6568–6584 (1996).
[Crossref] [PubMed]

Yang, P.-K.

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

Yang, S.

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

Yang, T.-H.

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

Yasuda, A.

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Yaws, C. L.

C. L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals (Elsevier, 2015).

Yeh, M.-H.

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

Yelamaggad, C. V.

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Yen, M.-H.

Yoon, T.-H.

Yu, H.-L.

H.-L. Yu and C.-C. Hsaio, “Comparison of different measurement methods for transmittance haze,” Metrologia 46(4), S233–S237 (2009).
[Crossref]

Yu, S.-H.

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

Yuan, X.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Zhang, H.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Zhang, L.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Zhang, X.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

Zhao, Y.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Zhou, C.

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

Zhuo, R.

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

Zou, C.

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

ACS Appl. Mater. Interfaces (7)

M. Laurenti, S. Bianco, M. Castellino, N. Garino, A. Virga, C. F. Pirri, and P. Mandracci, “Toward plastic smart windows: Optimization of indium tin oxide electrodes for the synthesis of electrochromic devices on polycarbonate substrates,” ACS Appl. Mater. Interfaces 8(12), 8032–8042 (2016).
[Crossref] [PubMed]

S. Krishna Prasad, M. Baral, A. Murali, and S. N. Jaisankar, “Carbon nanotube reinforced polymer-stabilized liquid crystal device: Lowered and thermally invariant threshold with accelerated dynamics,” ACS Appl. Mater. Interfaces 9(31), 26622–26629 (2017).
[Crossref] [PubMed]

M. Kim, K. J. Park, S. Seok, J. M. Ok, H.-T. Jung, J. Choe, D. H. Oh, and D. H. Kim, “Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows,” ACS Appl. Mater. Interfaces 7(32), 17904–17909 (2015).
[Crossref] [PubMed]

T.-G. La, X. Li, A. Kumar, Y. Fu, S. Yang, and H.-J. Chung, “Highly flexible, multipixelated thermosensitive smart windows made of tough hydrogels,” ACS Appl. Mater. Interfaces 9(38), 33100–33106 (2017).
[Crossref] [PubMed]

F. Malara, A. Cannavale, S. Carallo, and G. Gigli, “Smart windows for building integration: a new architecture for photovoltachromic devices,” ACS Appl. Mater. Interfaces 6(12), 9290–9297 (2014).
[Crossref] [PubMed]

H. Y. Lee, Y. Cai, S. Bi, Y. N. Liang, Y. Song, and X. M. Hu, “A dual-responsive nanocomposite toward climate-adaptable solar modulation for energy-saving smart windows,” ACS Appl. Mater. Interfaces 9(7), 6054–6063 (2017).
[Crossref] [PubMed]

B. Yang, X. Dong, Q. Lei, R. Zhuo, J. Feng, and X. Zhang, “Host–Guest interaction-based self-engineering of nano-sized vesicles for co-delivery of genes and anticancer drugs,” ACS Appl. Mater. Interfaces 7(39), 22084–22094 (2015).
[Crossref] [PubMed]

ACS Nano (3)

S. Cong, Y. Cao, X. Fang, Y. Wang, Q. Liu, H. Gui, C. Shen, X. Cao, E. S. Kim, and C. Zhou, “Carbon nanotube macroelectronics for active matrix polymer-dispersed liquid crystal displays,” ACS Nano 10(11), 10068–10074 (2016).
[Crossref] [PubMed]

C. H. Lee, H. S. Lim, J. Kim, and J. H. Cho, “Counterion-induced reversibly switchable transparency in smart windows,” ACS Nano 5(9), 7397–7403 (2011).
[Crossref] [PubMed]

M.-H. Yeh, L. Lin, P.-K. Yang, and Z. L. Wang, “Motion-driven electrochromic reactions for self-powered smart window system,” ACS Nano 9(5), 4757–4765 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

J. Murray, D. Ma, and J. N. Munday, “Electrically controllable light trapping for self-powered switchable solar windows,” ACS Photonics 4(1), 1–7 (2017).
[Crossref]

Adv. Energy Mater. (1)

H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. 7(14), 1602209 (2017).
[Crossref]

Adv. Funct. Mater. (1)

F. P. Nicoletta, G. Chidichimo, D. Cupelli, G. De Filpo, M. De Benedittis, B. Gabriele, G. Salerno, and A. Fazio, “Electrochromic polymer-dispersed liquid-crystal Film: A new bifunctional device,” Adv. Funct. Mater. 15(6), 995–999 (2005).
[Crossref]

Adv. Mater. (4)

R. Jakubiak, T. J. Bunning, R. A. Vaia, L. V. Natarajan, and V. P. Tondiglia, “Electrically switchable, one-dimensional polymeric resonators from holographic photopolymerization: A new approach for active photonic bandgap materials,” Adv. Mater. 15(3), 241–244 (2003).
[Crossref]

I. Dierking, “Polymer network-stabilized liquid crystals,” Adv. Mater. 12(3), 167–181 (2000).
[Crossref]

D. A. Higgins, “Probing the mesoscopic chemical and physical properties of polymer-dispersed liquid crystals,” Adv. Mater. 12(4), 251–264 (2000).
[Crossref]

Y. J. Liu, X. Ding, S.-C. S. Lin, J. Shi, I.-K. Chiang, and T. J. Huang, “Surface acoustic wave driven light shutters using polymer-dispersed liquid crystals,” Adv. Mater. 23(14), 1656–1659 (2011).
[Crossref] [PubMed]

Annu. Rev. Chem. Biomol. Eng. (1)

Y. Wang, E. L. Runnerstrom, and D. J. Milliron, “Switchable materials for smart windows,” Annu. Rev. Chem. Biomol. Eng. 7(1), 283–304 (2016).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

F. P. Nicoletta, D. Cupelli, G. De Filpo, and G. Chidichimo, “Electrochromism in switchable nematic emulsions,” Appl. Phys. Lett. 84(21), 4260–4262 (2004).
[Crossref]

H. Kitzerow, H. Molsen, and G. Heppke, “Linear electro‐optic effects in polymer‐dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60(25), 3093–3095 (1992).
[Crossref]

A. Masutani, T. Roberts, B. Schüller, N. Hollfelder, P. Kilickiran, G. Nelles, A. Yasuda, and A. Sakaigawa, “Improvement of dichroic polymer dispersed liquid crystal performance using lift-off technique,” Appl. Phys. Lett. 89(18), 183514 (2006).
[Crossref]

Chem. Mater. (1)

B. Moshofsky and T. Mokari, “Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism,” Chem. Mater. 25(8), 1384–1391 (2013).
[Crossref]

Cosmetics (1)

D. Drechsel, K. Towle, E. Fung, R. Novick, D. Paustenbach, and A. Monnot, “Chemical stability analysis of hair cleansing conditioners under high-heat conditions experienced during hair styling processes,” Cosmetics 5(1), 23 (2018).
[Crossref]

Eur Phys J E Soft Matter (1)

M. Mitov, E. Nouvet, and N. Dessaud, “Polymer-stabilized cholesteric liquid crystals as switchable photonic broad bandgaps,” Eur Phys J E Soft Matter 15(4), 413–419 (2004).
[Crossref] [PubMed]

IEEE Electron Device Lett. (1)

F. Bruyneel, H. De Smet, and A. Van Calster, “Reduction of the switching time of Polymer-Dispersed liquid crystal using field oriented addressing,” IEEE Electron Device Lett. 23(7), 401–403 (2002).
[Crossref]

IEEE Photonics J. (1)

Z. Lan, Y. Li, H. Dai, and D. Luo, “Bistable smart window based on ionic liquid doped cholesteric liquid crystal,” IEEE Photonics J. 9(1), 1–7 (2017).
[Crossref]

J. Acoust. Soc. Am. (1)

J. W. Caruthers, “On Rayleigh and Mie scattering,” J. Acoust. Soc. Am. 130(4), 2554 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, and S.-H. Yu, “Large area co-assembly of nanowires for flexible transparent smart windows,” J. Am. Chem. Soc. 139(29), 9921–9926 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (2)

S. C. Jain, R. S. Thakur, and S. T. Lakshmikumar, “Switching response of a polymer dispersed liquid‐crystal composite,” J. Appl. Phys. 73(8), 3744–3748 (1993).
[Crossref]

J. D. LeGrange, S. A. Carter, M. Fuentes, J. Boo, A. E. Freeny, W. Cleveland, and T. M. Miller, “Dependence of the electro-optical properties of polymer dispersed liquid crystals on the photopolymerization process,” J. Appl. Phys. 81(9), 5984–5991 (1997).
[Crossref]

J. Chem. Technol. Biotechnol. (1)

M. C. Silva, J. Sotomayor, and J. Figueirinhas, “Effect of an additive on the permanent memory effect of polymer dispersed liquid crystal films,” J. Chem. Technol. Biotechnol. 90(9), 1565–1569 (2015).
[Crossref]

J. Disp. Technol. (1)

S.-L. Hou, W.-K. Choi, and G.-D. J. Su, “Ultra-bright heads-up displays using a method of projected color images by combination of LEDs and polymer-dispersed liquid crystals,” J. Disp. Technol. 10(3), 228–234 (2014).
[Crossref]

J. Mol. Liq. (1)

L. M. Pappu, R. J. Martin-Palma, B. Martín-Adrados, and I. Abdulhalim, “Voltage controlled scattering from porous silicon Mie-particles in liquid crystals,” J. Mol. Liq. 281, 108–116 (2019).
[Crossref]

J. Nanophotonics (1)

I. Abdulhalim, “Liquid crystal active nanophotonics and plasmonics: from science to devices,” J. Nanophotonics 6(1), 061001 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

E. S. Fomina, Y. B. Vysotsky, E. A. Belyaeva, D. Vollhardt, V. B. Fainerman, and R. Miller, “On hexagonal orientation of fatty alcohols in monolayers at the air/water interface: Quantum-chemical approach,” J. Phys. Chem. C 118(8), 4122–4130 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

D. Coates, W. A. Crossland, J. H. Morrisy, and B. Needham, “Electrically induced scattering textures in smectic A phases and their electrical reversal,” J. Phys. D Appl. Phys. 11(14), 2025–2034 (1978).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

K. N. Liou, Y. Takano, and P. Yang, “On geometric optics and surface waves for light scattering by spheres,” J. Quant. Spectrosc. Radiat. Transf. 111(12–13), 1980–1989 (2010).
[Crossref]

H. He, W. Li, X. Zhang, M. Xia, and K. Yang, “Light scattering by a spheroidal bubble with geometrical optics approximation,” J. Quant. Spectrosc. Radiat. Transf. 113(12), 1467–1475 (2012).
[Crossref]

Liq. Cryst. (3)

I. Abdulhalim, “Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects,” Liq. Cryst. 33(9), 1027–1041 (2006).
[Crossref]

K. Li, M. Pivnenko, D. Chu, A. Cockburn, and W. O’Neill, “Uniform and fast switching of window-size smectic A liquid crystal panels utilising the field gradient generated at the fringes of patterned electrodes,” Liq. Cryst. 43(6), 735–749 (2016).
[Crossref]

Z. He, X. Yuan, Y. Zhao, C. Zou, S. Guo, B. He, H. Zhang, L. Zhang, D. Yang, and H. Yang, “A greener electrochromic liquid crystal based on ionic liquid electrolytes,” Liq. Cryst. 43(8), 1110–1119 (2016).
[Crossref]

Mater. Today (1)

C. M. Lampert, “Chromogenic smart materials,” Mater. Today 7(3), 28–35 (2004).
[Crossref]

Metrologia (1)

H.-L. Yu and C.-C. Hsaio, “Comparison of different measurement methods for transmittance haze,” Metrologia 46(4), S233–S237 (2009).
[Crossref]

Nature (1)

M. Grätzel, “Ultrafast colour displays,” Nature 409(6820), 575–576 (2001).
[Crossref] [PubMed]

Opt. Eng. (1)

A. G. Borovoi, “Light backscattering by hexagonal ice crystal particles in the geometrical optics approximation,” Opt. Eng. 44(7), 071208 (2005).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Rev. (1)

G. H. Vineyard, “Geometrical optics and the theory of multiple small angle scattering,” Phys. Rev. 85(4), 633–636 (1952).
[Crossref]

Phys. Rev. E (1)

P. L. Madhuri, U. S. Hiremath, C. V. Yelamaggad, K. P. Madhuri, and S. K. Prasad, “Influence of virtual surfaces on Frank elastic constants in a polymer-stabilized bent-core nematic liquid crystal,” Phys. Rev. E 93(4), 042706 (2016).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stabilized nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 61(2), 1567–1573 (2000).
[Crossref] [PubMed]

Phys. Today (1)

P. G. de Gennes, J. Prost, and R. Pelcovits, “The Physics of Liquid Crystals,” Phys. Today 48(5), 70–71 (1995).
[Crossref]

Polymers (Basel) (1)

Z.-Y. Liang, C.-Y. Tu, T.-H. Yang, C.-K. Liu, and K.-T. Cheng, “Low-Threshold-voltage and electrically switchable polarization-selective scattering mode liquid crystal light shutters,” Polymers (Basel) 10(12), 1354 (2018).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Mucha and E. Nastal-Grosicka, “Polymer-dispersed liquid crystal displays: switching times effect,” Proc. SPIE 3318, 435 (1998).

RSC Advances (1)

G. Kasza, G. Gyulai, Á. Ábrahám, G. Szarka, B. Iván, and É. Kiss, “Amphiphilic hyperbranched polyglycerols in a new role as highly efficient multifunctional surface active stabilizers for poly(lactic/glycolic acid) nanoparticles,” RSC Advances 7(8), 4348–4352 (2017).
[Crossref]

Sci. Adv. (1)

Q. Liu and I. I. Smalyukh, “Liquid crystalline cellulose-based nematogels,” Sci. Adv. 3(8), e1700981 (2017).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

C. M. Lampert, “Large-area smart glass and integrated photovoltaics,” Sol. Energy Mater. Sol. Cells 76(4), 489–499 (2003).
[Crossref]

World J. Chem. Educ. (1)

M. Ueno, N. Isokawa, K. Fueda, S. Nakahara, H. Teshima, and N. Yamamoto, “Practical chemistry of long-lasting bubbles,” World J. Chem. Educ. 4(2), 32–44 (2016).

Z. Naturforsch. A (2)

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil l1,” Z. Naturforsch. A 14(10), 882 (1959).
[Crossref]

W. Maier and A. Saupe, “Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil II,” Z. Naturforsch. A 15(4), 287 (1960).
[Crossref]

Other (1)

C. L. Yaws, The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals (Elsevier, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic illustration of (a) an octadecanol molecule, (b) organization of octadecanol molecules at an octadecanol-water interface, and (c) high concentration of octadecanol reveals a micelle formation in a water-octadecanol mixture. Hydrogen (white ball), Carbon (turquoise ball), and Oxygen (red ball). Frame b reproduced with permission from reference [46]. Copyright 2014 American Chemical Society.
Fig. 2
Fig. 2 Photographs of the DNA bridge at BGU as seen through the switchable cell made with 10% w/w octadecanol-BL036 LC composite, in the scattering state obtained with 0 V, translucent state with 50 V and the transparent state at 70 V. Images are taken in the absence of any polarizers through a transparent glass window from a distant around 500 m. The yellowish diffuse color at 0V is a result of the Negev desert sand color.
Fig. 3
Fig. 3 a) Relative scattering modulation of the LC cell measured for different driving voltages in the wavelength range of 480–900 nm using the setup of Fig. 4(a). b) Representative data of the scattering modulation as a function of the driving voltage at various wavelengths. c) Cell response to the applied voltage, with the rise time (red circles) measured during the voltage ON and fall time (green squares) during the OFF state. d) Variation in the scattering modulation with the temperature at 0 V and 70 V at 600 nm, for (i) increasing temperature and (ii) decreasing temperatures. A difference in scattering modulation between voltage OFF and ON states is seen below the melting of octadecanol in the composite (~59 °C). The anomalous scattering near the octadecanol melting point maybe due to the large fluctuations near the transition temperature and the creation of scattering domains of size comparable to the wavelength. The connection between the experimental points in panels b and d are merely to help guide the eye.
Fig. 4
Fig. 4 (a) Schematic illustration of the experimental setup employed for the electro-optic measurements. (b) The device stability with voltage cycling between ON/OFF states. It shows a fatigue-free performance over many ON/OFF voltage switching cycles. Modulation is monitored at λ = 635 nm.
Fig. 5
Fig. 5 a) Total transmittance TT (left panel) and diffuse transmittance DT (right panel) of the LC cell measured for different driving voltages in the wavelength range of 470–950 nm. b) Haze from the LC cell measured for different driving voltages. c) TT and DT as a function of the driving voltage at 600 nm. d) Haze as a function of the driving voltage at 600 nm. DT and Haze reduces with the increase in the applied voltage significantly, while negligible changes exist in TT perhaps due to some modulation of the Fresnel reflectance from the interfaces.
Fig. 6
Fig. 6 3-Dimensional Z-stack images of the LC cell taken with 20x magnification from the confocal laser scanning microscope and the corresponding histogram profiles with the image intensities and their frequencies taken at different voltages: 0 V (a, b), and 50 V (c, d), respectively.
Fig. 7
Fig. 7 Polarizing optical microscopy images of the LC cell at different voltages. The images are obtained in the transmission mode with the LC cell positioned at 45° between the crossed polarizers. As the applied voltage increases, the number and size of domains in which the molecules orient along the field direction increases.
Fig. 8
Fig. 8 A schematic illustration of possible molecular orientations in the voltage OFF and ON states. In the OFF state, the majority of LC molecules between the octadecanol domains are oriented perpendicular to the chains, in the plane of the substrates, while those within the octadecanol domains are parallel to the chains or randomly oriented, resulting in scattered light. In the ON state, all the LC molecules align themselves along the field direction, thus increasing light transmission.

Tables (2)

Tables Icon

Table 1 Haze measured in the voltage OFF and ON states at λ = 600 nm for devices with different concentrations of 1-Octadecanol (5–50% w/w) in LC BL036.

Tables Icon

Table 2 Measured haze in the voltage OFF and ON states at λ = 600 nm for the devices with different compounds having same chain length (C-18) with different functional groups (Octadecanol, Octadecane, Octadecylamine, Octadecylphosphonic acid, Octadecanethiol, and Stearic acid) 10% w/w in LC BL036.

Metrics