Abstract

For the [0001] oriented AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs), the holes in the p-type electron blocking layer (p-EBL) are depleted due to the polarization induced positive sheet charges at the last quantum barrier (LQB)/p-EBL interface. The hole depletion effect significantly reduces the hole injection capability across the p-EBL. In this work, we propose inserting a thin AlN layer between the LQB and the p-EBL, which can generate the hole accumulation at the AlN/p-EBL interface. Meanwhile, the holes can obtain the energy when traveling from the p-EBL into the multiple quantum wells (MQWs) by intraband tunneling through the thin AlN layer. As a result, the hole injection and the external quantum efficiency (EQE) have been remarkably enhanced. Moreover, we point out that the thick AlN insertion layer can further generate the hole accumulation in the p-EBL and increase the hole energy which helps to increase the hole injection. We also prove that the intraband tunneling for holes across the thick AlN insertion layer is facilitated by using the optimized structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Increasing the hole energy by grading the alloy composition of the p-type electron blocking layer for very high-performance deep ultraviolet light-emitting diodes

Zi-Hui Zhang, Jianquan Kou, Sung-Wen Huang Chen, Hua Shao, Jiamang Che, Chunshuang Chu, Kangkai Tian, Yonghui Zhang, Wengang Bi, and Hao-Chung Kuo
Photon. Res. 7(4) B1-B6 (2019)

Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes

Zi-Hui Zhang, Kangkai Tian, Chunshuang Chu, Mengqian Fang, Yonghui Zhang, Wengang Bi, and Hao-Chung Kuo
Opt. Express 26(14) 17977-17987 (2018)

On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes

Zi-Hui Zhang, Luping Li, Yonghui Zhang, Fujun Xu, Qiang Shi, Bo Shen, and Wengang Bi
Opt. Express 25(14) 16550-16559 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
    [Crossref]
  2. H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
    [Crossref]
  3. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
    [Crossref]
  4. J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
    [Crossref]
  5. K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
    [Crossref]
  6. M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
    [Crossref]
  7. X. Li, S. Sundaram, P. Disseix, G. Le Gac, S. Bouchoule, G. Patriarche, F. Reveret, J. Leymarie, Y. El Gmili, T. Moudakir, F. Genty, J. P. Salvestrini, R. D. Dupuis, P. L. Voss, and A. Ougazzaden, “AlGaN-based MQWs grown on a thick relaxed AlGaN buffer on AlN templates emitting at 285 nm,” Opt. Mater. Express 5(2), 380–392 (2015).
    [Crossref]
  8. T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
    [Crossref]
  9. P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
    [Crossref]
  10. K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
    [Crossref]
  11. M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
    [Crossref]
  12. R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
    [Crossref]
  13. J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
    [Crossref]
  14. Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
    [Crossref]
  15. C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
    [Crossref]
  16. Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
    [Crossref]
  17. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
    [Crossref] [PubMed]
  18. S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).
  19. Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
    [Crossref] [PubMed]
  20. Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
    [Crossref] [PubMed]
  21. J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
    [Crossref]
  22. T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
    [Crossref]
  23. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
    [Crossref]
  24. Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
    [Crossref]
  25. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
    [Crossref]
  26. Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
    [Crossref]
  27. J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
    [Crossref]
  28. V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
    [Crossref]
  29. Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
    [Crossref] [PubMed]

2018 (4)

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

2017 (5)

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

2016 (3)

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

2015 (1)

2014 (4)

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

2013 (4)

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

2012 (1)

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

2010 (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

2009 (1)

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

2008 (2)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

2005 (1)

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

2003 (1)

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

2002 (1)

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Akaike, R.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Ambacher, O.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Avrutin, V.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Balakrishnan, K.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Bernardini, F.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Bi, W.

Bi, W. G.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Bilenko, Y.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Bouchoule, S.

Cai, X. F.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Chang, H. T.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chang, J. Y.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chen, C. Q.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Chen, F. M.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Chen, H. Y.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Chen, Q.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Chen, S. C.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Chen, S. W. H.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Chiu, C. H.

Cho, J.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Chu, C.

Chu, C. S.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Cong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Dai, J. N.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Ding, K.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Disseix, P.

Dobrinsky, A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Dong, P.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Dupuis, R. D.

Egawa, T.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Einfeldt, S.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

El Gmili, Y.

Fan, S.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Fang, M.

Fang, M. Q.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Fang, Y. Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Fiorentini, V.

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Fujikawa, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Funato, M.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Garrett, G. A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Gaska, R.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Geng, C.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Genty, F.

Guttmann, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Hirayama, H.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

Hu, X. H.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Ichikawa, S.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Jain, R.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Jena, D.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Kamata, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Kang, J. Y.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Katona, T.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kawakami, Y.

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Khan, A.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kim, J. K.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Knauer, A.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kneiss, M.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Kneissl, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kolbe, T.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kosaka, K.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Kueller, V.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kuhn, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Kuo, H. C.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Kuo, H.-C.

Kuo, Y. K.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Lapeyrade, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Le Gac, G.

Leymarie, J.

Li, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Li, J. C.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Li, L.

Li, L. P.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Li, S. P.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Li, X.

Li, X. Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Li, Y.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Li, Z. M. S.

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

Lian, C.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Lin, W.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Liu, D. Y.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Liu, S. Q.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Lu, T. C.

Lunev, A.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Maeda, N.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Mehnke, F.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Meyer, J. R.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Miyoshi, M.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Morkoc, H.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Moudakir, T.

Ougazzaden, A.

Ozgur, U.

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

Park, J. S.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Patriarche, G.

Piprek, J.

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

Protasenko, V.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Qin, Z.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Rass, J.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Reveret, F.

Rodak, L. E.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Rothe, M.-A.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Salvestrini, J. P.

Seong, T. Y.

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Shatalov, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Shen, B.

Shi, Q.

Shibata, T.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Shih, Y. H.

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

Shur, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Simon, J.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Stellmach, J.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Sumiya, S.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Sun, L.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Sun, Q.

Sun, W. H.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Sundaram, S.

Tanaka, M.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Tian, K.

Tian, K. K.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Tian, W.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Tian, Y.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Toyoda, S.

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Voss, P. L.

Vurgaftman, I.

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Wang, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wang, S. W.

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Wei, T.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Wernicke, T.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

Weyers, M.

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Wraback, M.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Wu, Z. H.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

Xing, H.

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Xu, F.

Xu, J. T.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Yan, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yan, Q.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Yang, J. W.

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Yang, W. H.

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

Ye, C. Y.

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Zeng, J.

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Zhang, J. C.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

Zhang, M.

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Zhang, Y.

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

Zhang, Y. H.

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Zhang, Z. H.

Z. H. Zhang, K. Tian, C. Chu, M. Fang, Y. Zhang, W. Bi, and H.-C. Kuo, “Establishment of the relationship between the electron energy and the electron injection for AlGaN based ultraviolet light-emitting diodes,” Opt. Express 26(14), 17977–17987 (2018).
[Crossref] [PubMed]

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Zhang, Z.-H.

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, C. Chu, C. H. Chiu, T. C. Lu, L. Li, Y. Zhang, K. Tian, M. Fang, Q. Sun, H.-C. Kuo, and W. Bi, “UVA light-emitting diode grown on Si substrate with enhanced electron and hole injections,” Opt. Lett. 42(21), 4533–4536 (2017).
[Crossref] [PubMed]

Zhu, Y. H.

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

ACS Photonics (1)

Z. H. Zhang, S. W. H. Chen, Y. H. Zhang, L. P. Li, S. W. Wang, K. K. Tian, C. S. Chu, M. Q. Fang, H. C. Kuo, and W. G. Bi, “Hole transport manipulation to improv6e the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Appl. Phys. Adv. Mater. (1)

S. Q. Liu, C. Y. Ye, X. F. Cai, S. P. Li, W. Lin, and J. Y. Kang, “Performance enhancement of AlGaN deep-ultraviolet light-emitting diodes with varied superlattice barrier electron blocking layer,” Appl. Phys. Adv. Mater. 122(5), 527 (2016).

Appl. Phys. Express (1)

R. Akaike, S. Ichikawa, M. Funato, and Y. Kawakami, “AlxGa1-xN-based semipolar deep ultraviolet light-emitting diodes,” Appl. Phys. Express 11(6), 061001 (2018).
[Crossref]

Appl. Phys. Lett. (6)

J. C. Li, W. H. Yang, S. P. Li, H. Y. Chen, D. Y. Liu, and J. Y. Kang, “Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices,” Appl. Phys. Lett. 95(15), 151113 (2009).
[Crossref]

P. Dong, J. Yan, J. Wang, Y. Zhang, C. Geng, T. Wei, P. Cong, Y. Zhang, J. Zeng, Y. Tian, L. Sun, Q. Yan, J. Li, S. Fan, and Z. Qin, “282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates,” Appl. Phys. Lett. 102(24), 241113 (2013).
[Crossref]

J. Piprek and Z. M. S. Li, “Sensitivity analysis of electron leakage in III-nitride light-emitting diodes,” Appl. Phys. Lett. 102(13), 131103 (2013).
[Crossref]

T. Kolbe, F. Mehnke, M. Guttmann, C. Kuhn, J. Rass, T. Wernicke, and M. Kneissl, “Improved injection efficiency in 290 nm light emitting diodes with Al(Ga)N electron blocking heterostructure,” Appl. Phys. Lett. 103(3), 031109 (2013).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys. Lett. 80(7), 1204–1206 (2002).
[Crossref]

Crystals (Basel) (1)

K. Ding, V. Avrutin, U. Ozgur, and H. Morkoc, “Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes,” Crystals (Basel) 7(10), 300 (2017).
[Crossref]

ECS J. Solid State Sc. (1)

J. S. Park, J. K. Kim, J. Cho, and T. Y. Seong, “Review-Group III-nitride-based ultraviolet light-emitting diodes: ways of increasing external quantum efficiency,” ECS J. Solid State Sc. 6(4), Q42–Q52 (2017).
[Crossref]

Electron. Lett. (1)

Y. H. Zhu, S. Sumiya, J. C. Zhang, M. Miyoshi, T. Shibata, K. Kosaka, M. Tanaka, and T. Egawa, “Improved performance of 264 nm emission AlGaN-based deep ultraviolet light-emitting diodes,” Electron. Lett. 44(7), 493–495 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. K. Kuo, J. Y. Chang, F. M. Chen, Y. H. Shih, and H. T. Chang, “Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes,” IEEE J. Quantum Electron. 52(4), 3300105 (2016).
[Crossref]

IEEE Photonics J. (1)

Y. Li, S. C. Chen, W. Tian, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Advantages of AlGaN-based 310-nm UV light-emitting diodes with Al content graded AlGaN electron blocking layers,” IEEE Photonics J. 5(4), 8200309 (2013).
[Crossref]

J. Appl. Phys. (2)

H. Hirayama, “Quaternary InAlGaN-based high-efficiency ultraviolet light -emitting diodes,” J. Appl. Phys. 97(9), 091101 (2005).
[Crossref]

I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675–3696 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
[Crossref]

Nat. Photonics (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

J. Piprek, “Ultra-violet light-emitting diodes with quasi acceptor-free AlGaN polarization doping,” Opt. Quantum Electron. 44(3-5), 67–73 (2012).
[Crossref]

Phys. Status Solidi Rapid Res. Lett. (1)

K. K. Tian, Q. Chen, C. S. Chu, M. Q. Fang, L. P. Li, Y. H. Zhang, W. G. Bi, C. Q. Chen, Z.-H. Zhang, and J. N. Dai, “Investigations on AlGaN-based deep-ultraviolet light-emitting diodes with Si-doped quantum barriers of different doping concentrations,” Phys. Status Solidi Rapid Res. Lett. 12(1), 1700346 (2018).
[Crossref]

Phys. Status Solidi. – A Appl. Mater. Sci. (1)

T. Kolbe, J. Stellmach, F. Mehnke, M.-A. Rothe, V. Kueller, A. Knauer, S. Einfeldt, T. Wernicke, M. Weyers, and M. Kneiss, “Efficient carrier-injection and electron-confinement in UV-B light-emitting diodes,” Phys. Status Solidi. – A Appl. Mater. Sci. 213(1), 210–214 (2016).
[Crossref]

Science (1)

J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures,” Science 327(5961), 60–64 (2010).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Shatalov, W. H. Sun, R. Jain, A. Lunev, X. H. Hu, A. Dobrinsky, Y. Bilenko, J. W. Yang, G. A. Garrett, L. E. Rodak, M. Wraback, M. Shur, and R. Gaska, “High power AlGaN ultraviolet light emitters,” Semicond. Sci. Technol. 29(8), 084007 (2014).
[Crossref]

Superlattices Microstruct. (2)

C. S. Chu, K. K. Tian, M. Q. Fang, Y. H. Zhang, L. P. Li, W. G. Bi, and Z.-H. Zhang, “On the AlxGa1-xN/AyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes,” Superlattices Microstruct. 113, 472–477 (2018).
[Crossref]

M. Zhang, Y. Li, S. C. Chen, W. Tian, J. T. Xu, X. Y. Li, Z. H. Wu, Y. Y. Fang, J. N. Dai, and C. Q. Chen, “Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes by using staggered quantum wells,” Superlattices Microstruct. 75, 63–71 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic energy band diagrams for (a1) the conventional bulk AlGaN p-EBL, and (b1) the proposed structure with an AlN insertion layer between the LQB and the p-EBL; (a2) sketched hole concentration profile in the bulk AlGaN based p-EBL and (b2) sketched hole concentration profile in the p-EBL with an AlN insertion layer between the LQB and the p-EBL. Here, Ec, Ev, Efe, and Efh denote the conduction band, the valence band, the quasi-Fermi level for electrons, and the quasi-Fermi level for holes. ∆ϕ0 denotes the energy difference between points B and E in valence bands of the p-EBL and LQB. ∆ϕ1 means the energy difference between points A and B in valence bands of the LQB and the p-EBL. ∆ϕ2 represents the energy difference between points C and D in valence bands of the p-EBL and the p-AlGaN layer. ∆ϕ3 represents the energy difference between points B and C in valence bands of the p-EBL. P0 and P1 denote the thermionic emission processes. P2 represents the intraband tunneling process through the thin AlN insertion layer.
Fig. 2
Fig. 2 (a) Optical power, and (b) EQE in terms of the injection current for Reference device, Device A1, Device A2, Device A3 and Device B, respectively. Note, for better observation, the values of the optical power and the EQE for Devices A2 and A3 have been multiplied by 200. The experimental data are extracted from the report of Zhang et al. [29].
Fig. 3
Fig. 3 Calculated energy band diagrams for (a) Reference device with inset showing the hole concentration profile in the p-EBL region, (b) Device A1 with inset showing the hole concentration profile in the p-EBL region, (c) Device A3 with inset showing the hole concentration profile in the p-EBL region, and (d) Device B with inset showing the hole concentration profile in the p-EBL region. ∆ϕ0, ∆ϕ1, ∆ϕ2 and ∆ϕ3 have been defined in Fig. 2. ϕ1 denotes the effective conduction band barrier height for the AlN insertion layer. The values are calculated at the injection current level of 100 mA.
Fig. 4
Fig. 4 (a) Hole concentration profiles in the MQWs, and (b) electron concentration profiles in the LQB and the p-region for Reference device, Devices A1, A3 and B, respectively. For the convenience of observation, the hole concentration is intentionally multiplied by 50 for Device A3 and the hole concentration profiles are purposely shifted by 1.5 nm, 2.5 nm, and 4 nm for Device A1, Reference device, and Device A3 with the reference of Device B, respectively. The data are calculated when the injection current level is 100 mA.

Metrics