Abstract

Higher reflectance of the rear-side dielectric stack, at the wavelength of the laser source used for ablation, reduces laser-induced damage and improves the open-circuit voltage of PERC silicon solar cells. The understanding of this correlation increases the working window of cost-effective nanosecond laser ablation of the rear-side dielectric for higher-efficiency industrial PERC-like solar cells.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study

Nasim Rezaei, Olindo Isabella, Zeger Vroon, and Miro Zeman
Opt. Express 26(2) A39-A53 (2018)

Design, fabrication, and analysis of double-layer antireflection coatings (ARC) for industrial bifacial n-type crystalline silicon solar cells

Xia Yan, Ning Chen, Firdaus Bin Suhaimi, Lin Zhang, Xinxin Gong, Xinyu Zhang, and Shubham Duttagupta
Appl. Opt. 58(15) E1-E6 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
    [Crossref]
  2. W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
    [Crossref]
  3. B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
    [Crossref]
  4. J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.
  5. M. A. Green, “The Passivated Emitter and Rear Cell (PERC): From conception to mass production,” Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).
    [Crossref]
  6. M. Fischer "International Technological Roadmap for Photovoltaic (ITRPV)," (2018).
  7. S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
    [Crossref]
  8. Z. Xia, Y. Gao, L. Tao, X. Li, Z. Yang, R. Sidhu, J. Dong, H. Qiao, K. Teng, B. Zhang, and G. Xing, “Rear side dielectrics choices in PERC solar cells,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013), 1781–1783.
    [Crossref]
  9. T. Lauermann, B. Fröhlich, G. Hahn, and B. Terheiden, “Design considerations for industrial rear passivated solar cells,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012), 001710–001715.
    [Crossref]
  10. M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
    [Crossref]
  11. J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
    [Crossref]
  12. K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012), 000265–000271.
    [Crossref]
  13. Y. Huang, P. C. Ang, and J. Li, “20% Multicrystalline silicon PERC-solar cells, based on a low-cost wet-chemical nano-texturing method,” in 12th SNEC,International Photovoltaic Power Generation and Smart Energy Conference & Exhibition, 2018)
  14. P. A. Basore, “Extended spectral analysis of internal quantum efficiency,” in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283–9), 1993), 147–152.
    [Crossref]
  15. J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
    [Crossref]
  16. M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
    [Crossref]

2019 (1)

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

2015 (2)

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

M. A. Green, “The Passivated Emitter and Rear Cell (PERC): From conception to mass production,” Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).
[Crossref]

2014 (1)

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

2013 (1)

M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
[Crossref]

2012 (1)

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

2007 (1)

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

2006 (1)

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

1989 (1)

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Aberle, A. G.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

Altermatt, P. P.

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Balaji, N.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Basore, P. A.

P. A. Basore, “Extended spectral analysis of internal quantum efficiency,” in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283–9), 1993), 147–152.
[Crossref]

Blakers, A. W.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Bock, R.

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Brendel, R.

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

Brendle, W.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Dullweber, T.

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

Duttagupta, S.

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

Gatz, S.

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

Green, M. A.

M. A. Green, “The Passivated Emitter and Rear Cell (PERC): From conception to mass production,” Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).
[Crossref]

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Grohe, A.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Hoex, B.

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Hofmann, M.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Kang, Y.

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

Kania, D.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Kessels, W. M. M.

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Khanna, A.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Kim, D.

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
[Crossref]

Kim, M.

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
[Crossref]

Kohn, N.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Milne, A. M.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Mueller, T.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Müller, J.

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

Nguyen, V. X.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Palfinger, G.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Park, S.

M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
[Crossref]

Perez, D. J.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Preu, R.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Rau, U.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Rentsch, J.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Saint-Cast, P.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Sanden, M. C. M.

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Schetter, C.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Schmidt, J.

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Schneiderlöchner, E.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Shanmugam, V.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Sperlich, H.-P.

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

Stangl, R.

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

Tabajonda, R. V.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Wang, A.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Wang, P.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Werner, J. H.

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Wong, J.

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

Yacob Ali, J. M.

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

Zhao, J.

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

Appl. Phys. Lett. (2)

A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, and M. A. Green, “22.8% efficient silicon solar cell,” Appl. Phys. Lett. 55(13), 1363–1365 (1989).
[Crossref]

B. Hoex, J. Schmidt, R. Bock, P. P. Altermatt, M. C. M. Sanden, and W. M. M. Kessels, “M. D., and G. L. J., “Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3,” Appl. Phys. Lett. 91(11), 112107 (2007).
[Crossref]

Energy Procedia (1)

S. Gatz, J. Müller, T. Dullweber, and R. Brendel, “Analysis and Optimization of the Bulk and Rear Recombination of Screen-Printed PERC Solar Cells,” Energy Procedia 27, 95–102 (2012).
[Crossref]

IEEE Journal of Photovoltaics (1)

J. Wong, S. Duttagupta, R. Stangl, B. Hoex, and A. G. Aberle, “A Systematic Loss Analysis Method for Rear-Passivated Silicon Solar Cells,” IEEE Journal of Photovoltaics 5(2), 619–626 (2015).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

W. Brendle, V. X. Nguyen, A. Grohe, E. Schneiderlöchner, U. Rau, G. Palfinger, and J. H. Werner, “20·5% efficient silicon solar cell with a low temperature rear side process using laser-fired contacts,” Prog. Photovolt. Res. Appl. 14(7), 653–662 (2006).
[Crossref]

Sol. Energy (1)

M. Kim, D. Kim, D. Kim, and Y. Kang, “Impact of laser pulse width on laser ablation process of high performance PERC cells,” Sol. Energy 110, 208–213 (2014).
[Crossref]

Sol. Energy Mater. Sol. Cells (3)

J. M. Yacob Ali, V. Shanmugam, A. Khanna, P. Wang, N. Balaji, R. V. Tabajonda, D. J. Perez, A. G. Aberle, and T. Mueller, “Analysis of nanosecond and femtosecond laser ablation of rear dielectrics of silicon wafer solar cells,” Sol. Energy Mater. Sol. Cells 192, 117–122 (2019).
[Crossref]

M. Kim, S. Park, and D. Kim, “Highly efficient PERC cells fabricated using the low cost laser ablation process,” Sol. Energy Mater. Sol. Cells 117, 126–131 (2013).
[Crossref]

M. A. Green, “The Passivated Emitter and Rear Cell (PERC): From conception to mass production,” Sol. Energy Mater. Sol. Cells 143, 190–197 (2015).
[Crossref]

Other (7)

M. Fischer "International Technological Roadmap for Photovoltaic (ITRPV)," (2018).

Z. Xia, Y. Gao, L. Tao, X. Li, Z. Yang, R. Sidhu, J. Dong, H. Qiao, K. Teng, B. Zhang, and G. Xing, “Rear side dielectrics choices in PERC solar cells,” in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013), 1781–1783.
[Crossref]

T. Lauermann, B. Fröhlich, G. Hahn, and B. Terheiden, “Design considerations for industrial rear passivated solar cells,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012), 001710–001715.
[Crossref]

J. Rentsch, H.-P. Sperlich, N. Kohn, D. Kania, P. Saint-Cast, C. Schetter, M. Hofmann, and R. Preu, “Industrial Deposition of PECVD AlOx for Rear Passivation of PERC Type mc-Si Solar Cells,” in 25th European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, 6–10 September 2010, Valencia, Spain, (Valencia, Spain, 2010), pp. 1715 - 1718.

K. R. McIntosh and S. C. Baker-Finch, “OPAL 2: Rapid optical simulation of silicon solar cells,” in 2012 38th IEEE Photovoltaic Specialists Conference, 2012), 000265–000271.
[Crossref]

Y. Huang, P. C. Ang, and J. Li, “20% Multicrystalline silicon PERC-solar cells, based on a low-cost wet-chemical nano-texturing method,” in 12th SNEC,International Photovoltaic Power Generation and Smart Energy Conference & Exhibition, 2018)

P. A. Basore, “Extended spectral analysis of internal quantum efficiency,” in Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference - 1993 (Cat. No.93CH3283–9), 1993), 147–152.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Cross-sectional schematic of mc-Si PERC solar cell with (1) rear-side Si/dielectric interface, (2) internal reflectivity of rear-side dielectric/metal interface and (3) rear-side Si/metal interface.
Fig. 2
Fig. 2 UV-Vis-NIR reflectance curves of the four different rear-side dielectric stacks and their corresponding WAR values in the 900 - 1200 nm wavelength range. The green dashed line at 532 nm indicates the target wavelength of laser ablation source.
Fig. 3
Fig. 3 The measured electrical 1-Sun parameters of the mc-Si PERC solar cells with different rear-side dielectric stacks.
Fig. 4
Fig. 4 The measured external quantum efficiencies of the mc-Si PERC solar cells with different rear-side dielectric stacks at short-circuit condition.
Fig. 5
Fig. 5 The photoluminescence maps of the mc-Si PERC solar cells with different rear-side dielectric stacks at open-circuit condition.
Fig. 6
Fig. 6 SEM images of the mc-Si PERC solar cells with different rear-side dielectric stacks, showing different LBSF thicknesses at the laser contact openings.

Metrics