Abstract

We present a wide-field imaging approach to optically sense underwater sediment resuspension events. It uses wide-field multi-directional views and diffuse backlight. Our approach algorithmically quantifies the amount of material resuspended and its spatiotemporal distribution. The suspended particles affect the radiation that reaches the cameras, hence the captured images. By measuring the radiance during and prior to resuspension, we extract the optical depth on the line of sight per pixel. Using computed tomography (CT) principles, the optical depths yield estimation of the extinction coefficient of the suspension, per voxel. The suspended density is then derived from the reconstructed extinction coefficient.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple scattering in optical coherence tomography. II. Experimental and theoretical investigation of cross talk in wide-field optical coherence tomography

Boris Karamata, Marcel Leutenegger, Markus Laubscher, Stéphane Bourquin, Theo Lasser, and Patrick Lambelet
J. Opt. Soc. Am. A 22(7) 1380-1388 (2005)

Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery

Marites M. Magno-Canto, Lachlan I. W. McKinna, Barbara J. Robson, and Katharina E. Fabricius
Opt. Express 27(20) A1350-A1371 (2019)

Full-color three-dimensional microscopy by wide-field optical coherence tomography

Lingfeng Yu and M.K. Kim
Opt. Express 12(26) 6632-6641 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
    [Crossref]
  2. A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
    [Crossref]
  3. S. C. Wainright,“Stimulation of heterotrophic microplankton production by resuspended marine sediments,”Science 238,1710–1712 (1987).
    [Crossref] [PubMed]
  4. G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).
  5. R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
    [Crossref]
  6. G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
    [Crossref]
  7. T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
    [Crossref]
  8. T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
    [Crossref]
  9. K. Robert and S. Juniper,“Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory,”Mar. Ecol. Prog. Ser. 453,137–149 (2012).
    [Crossref]
  10. S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
    [Crossref]
  11. A. K. Rai and A. Kumar,“Continuous measurement of suspended sediment concentration: Technological advancement and future outlook,”Measurement 76,209–227 (2015).
    [Crossref]
  12. S. Pinet, J.-M. Martinez, S. Ouillon, B. Lartiges, and R. E. Villar,“Variability of apparent and inherent optical properties of sediment-laden waters in large river basins–lessons from in situ measurements and bio-optical modeling,”Opt. Express 25,A283–A310 (2017).
    [Crossref]
  13. M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).
  14. S. Shahi and E. Kuru,“An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph,”Powder Technol. 281,184–192 (2015).
    [Crossref]
  15. C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
    [Crossref]
  16. D. C. Fugate and C. T. Friedrichs,“Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST,”Cont. Shelf Res. 22,1867–1886 (2002).
    [Crossref]
  17. M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
    [Crossref]
  18. E. J. Davies, W. A. M. Nimmo-Smith, Y. C. Agrawal, and A. J. Souza,“Scattering signatures of suspended particles: an integrated system for combining digital holography and laser diffraction,”Opt. Express 19,25488–25499 (2011).
    [Crossref]
  19. G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
    [Crossref]
  20. X. H. Nguyen, S.-H. Lee, and H. S. Ko,“Analysis of electrohydrodynamic jetting behaviors using three-dimensional shadowgraphic tomography,”Appl. Opt. 52,4494–4504 (2013).
    [Crossref] [PubMed]
  21. Y. Gim, D. H. Shin, D. Y. Moh, and H. S. Ko,“Development of limited-view and three-dimensional reconstruction method for analysis of electrohydrodynamic jetting behavior,”Opt. Express 25,9244–9251 (2017).
    [Crossref] [PubMed]
  22. A. Levis, Y. Y. Schechner, and R. Talmon,“Statistical tomography of microscopic life,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2018), pp.6411–6420.
    [Crossref]
  23. A. Aides, Y. Y. Schechner, V. Holodovsky, M. J. Garay, and A. B. Davis,“Multi sky-view 3D aerosol distribution recovery,”Opt. Express 21,25820–25833 (2013).
    [Crossref] [PubMed]
  24. M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.
  25. V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.
  26. T. Treibitz and Y. Y. Schechner,“Turbid scene enhancement using multi-directional illumination fusion,”IEEE Transactions on Image Process. 21,4662–4667 (2012).
    [Crossref]
  27. T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
    [Crossref]
  28. Y.Y. Schechner and N. Karpel,“Attenuating natural flicker patterns,” inProceedings of MTS/IEEE OCEANS/TECHNOOCEAN, vol.3(IEEE,2004), pp.1262–1268.
  29. M. Sheinin and Y. Y. Schechner,“The next best underwater view,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2016), pp.3764–3773.
  30. A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).
  31. M. Pharr, W. Jakob, and G. Humphreys,Physically Based Rendering: From Theory to Implementation(Morgan Kaufmann,2016).
  32. W. Jakob,“Mitsuba renderer,”(2010). http://www.mitsuba-renderer.org .
  33. A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.
  34. H. R. Gordon, O. B. Brown, and M. M. Jacobs,“Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean,”Appl. Opt. 14, 417 (1975).
    [Crossref]
  35. C. D. Mobley,Light and Water: Radiative Transfer in Natural Waters(Academic,1994).
  36. IDS GmbH,“Data sheet of UI-3260CP-C-HQ camera,”Available at https://en.ids-imaging.com/IDS/datasheet_pdf.php?sku=AB00696
  37. Amazon,“Amazon Elastic Compute Cloud (Amazon EC2),”Available at https://aws.amazon.com/ec2/ .
  38. J. Amanatides and A. Woo,“A fast voxel traversal algorithm for ray tracing,” inProceedings of Eurographics, (1987).
  39. P. C. Hansen and M. Saxild-Hansen,“AIR tools—a MATLAB package of algebraic iterative reconstruction methods,”J. Comput. Appl. Math. 236,2167–2178 (2012).
    [Crossref]
  40. A. H. Andersen and A. C. Kak,“Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,”Ultrason. imaging 6,81–94 (1984).
    [Crossref] [PubMed]
  41. 3D Warehouse, Trimble,“Source of rendered camera model,”Available at https://3dwarehouse.sketchup.com/model/9a99ddf71fc253515561a71aee95364e/BlueViewMB1350onTripod
  42. A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).
  43. G. Bradski,“The OpenCV Library,”Dr. Dobb’s J. Softw. Tools(2000).
  44. LLC Agisoft (2016).AgiSoft PhotoScan Professional, Version 1.2.6.Retrieved from http://www.agisoft.com/downloads/installer/
  45. N. Otsu,“A threshold selection method from gray-level histograms,”IEEE Transactions on Systems, Man, and Cybernetics 9,62–66 (1979).
    [Crossref]
  46. W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.
  47. A. Levis, Y. Y. Schechner, and A. B. Davis,“Multiplescattering microphysics tomography,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition,vol. 1(IEEE, 2017).
  48. A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.
  49. S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
    [Crossref]

2017 (3)

2015 (2)

A. K. Rai and A. Kumar,“Continuous measurement of suspended sediment concentration: Technological advancement and future outlook,”Measurement 76,209–227 (2015).
[Crossref]

S. Shahi and E. Kuru,“An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph,”Powder Technol. 281,184–192 (2015).
[Crossref]

2013 (2)

2012 (5)

T. Treibitz and Y. Y. Schechner,“Turbid scene enhancement using multi-directional illumination fusion,”IEEE Transactions on Image Process. 21,4662–4667 (2012).
[Crossref]

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

P. C. Hansen and M. Saxild-Hansen,“AIR tools—a MATLAB package of algebraic iterative reconstruction methods,”J. Comput. Appl. Math. 236,2167–2178 (2012).
[Crossref]

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

K. Robert and S. Juniper,“Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory,”Mar. Ecol. Prog. Ser. 453,137–149 (2012).
[Crossref]

2011 (2)

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

E. J. Davies, W. A. M. Nimmo-Smith, Y. C. Agrawal, and A. J. Souza,“Scattering signatures of suspended particles: an integrated system for combining digital holography and laser diffraction,”Opt. Express 19,25488–25499 (2011).
[Crossref]

2009 (1)

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

2008 (1)

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

2006 (1)

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

2003 (1)

A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
[Crossref]

2002 (2)

R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
[Crossref]

D. C. Fugate and C. T. Friedrichs,“Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST,”Cont. Shelf Res. 22,1867–1886 (2002).
[Crossref]

1995 (1)

J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
[Crossref]

1987 (1)

S. C. Wainright,“Stimulation of heterotrophic microplankton production by resuspended marine sediments,”Science 238,1710–1712 (1987).
[Crossref] [PubMed]

1984 (1)

A. H. Andersen and A. C. Kak,“Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,”Ultrason. imaging 6,81–94 (1984).
[Crossref] [PubMed]

1979 (1)

N. Otsu,“A threshold selection method from gray-level histograms,”IEEE Transactions on Systems, Man, and Cybernetics 9,62–66 (1979).
[Crossref]

1975 (1)

Agrawal, Y. C.

Aides, A.

A. Aides, Y. Y. Schechner, V. Holodovsky, M. J. Garay, and A. B. Davis,“Multi sky-view 3D aerosol distribution recovery,”Opt. Express 21,25820–25833 (2013).
[Crossref] [PubMed]

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.

Almogi-Labin, A.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Almroth, E.

A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
[Crossref]

Alterman, M.

M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.

Amanatides, J.

J. Amanatides and A. Woo,“A fast voxel traversal algorithm for ray tracing,” inProceedings of Eurographics, (1987).

Amit, R.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Amos, C.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Andersen, A. H.

A. H. Andersen and A. C. Kak,“Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,”Ultrason. imaging 6,81–94 (1984).
[Crossref] [PubMed]

Avni, A.

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

Black, K.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Bradski, G.

G. Bradski,“The OpenCV Library,”Dr. Dobb’s J. Softw. Tools(2000).

Brosse, S.

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Brown, O. B.

Buehler, C.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

Calvo, R.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Chernyak, Y.

A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.

Couceiro, F.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Crusius, J.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

Davies, E. J.

Davis, A. B.

A. Aides, Y. Y. Schechner, V. Holodovsky, M. J. Garay, and A. B. Davis,“Multi sky-view 3D aerosol distribution recovery,”Opt. Express 21,25820–25833 (2013).
[Crossref] [PubMed]

A. Levis, Y. Y. Schechner, and A. B. Davis,“Multiplescattering microphysics tomography,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition,vol. 1(IEEE, 2017).

A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.

Donner, C.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

Elsinga, G. E.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

Elyashiv, H.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Fones, G.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Friedrichs, C. T.

D. C. Fugate and C. T. Friedrichs,“Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST,”Cont. Shelf Res. 22,1867–1886 (2002).
[Crossref]

Fugate, D. C.

D. C. Fugate and C. T. Friedrichs,“Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST,”Cont. Shelf Res. 22,1867–1886 (2002).
[Crossref]

Garay, M. J.

Genin, A.

R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
[Crossref]

Geva, A.

A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.

Gilboa, M.

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Gim, Y.

Gordon, H. R.

Gortler, S. J.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

Greenwood, N.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Grosbard, S.

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Grossbard, S.

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Gupta, M.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

Gupta, R.

A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.

Hall, P.

A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
[Crossref]

Hansen, P. C.

P. C. Hansen and M. Saxild-Hansen,“AIR tools—a MATLAB package of algebraic iterative reconstruction methods,”J. Comput. Appl. Math. 236,2167–2178 (2012).
[Crossref]

Harlavan, Y.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Helsby, R.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Herut, B.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

Herut, H.

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

Holodovsky, V.

A. Aides, Y. Y. Schechner, V. Holodovsky, M. J. Garay, and A. B. Davis,“Multi sky-view 3D aerosol distribution recovery,”Opt. Express 21,25820–25833 (2013).
[Crossref] [PubMed]

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

Humphreys, G.

M. Pharr, W. Jakob, and G. Humphreys,Physically Based Rendering: From Theory to Implementation(Morgan Kaufmann,2016).

Jacobs, M. M.

Jakob, W.

M. Pharr, W. Jakob, and G. Humphreys,Physically Based Rendering: From Theory to Implementation(Morgan Kaufmann,2016).

Jensen, A.

J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
[Crossref]

Jensen, H. W.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

Juniper, S.

K. Robert and S. Juniper,“Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory,”Mar. Ecol. Prog. Ser. 453,137–149 (2012).
[Crossref]

Kähler, C. J.

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Kak, A. C.

A. H. Andersen and A. C. Kak,“Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,”Ultrason. imaging 6,81–94 (1984).
[Crossref] [PubMed]

Karpel, N.

Y.Y. Schechner and N. Karpel,“Attenuating natural flicker patterns,” inProceedings of MTS/IEEE OCEANS/TECHNOOCEAN, vol.3(IEEE,2004), pp.1262–1268.

Katz, T.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Kelly-Gerreyn, B.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Ko, H. S.

Kompenhans, J.

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Kumar, A.

A. K. Rai and A. Kumar,“Continuous measurement of suspended sediment concentration: Technological advancement and future outlook,”Measurement 76,209–227 (2015).
[Crossref]

Kunz, C.

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

Kuru, E.

S. Shahi and E. Kuru,“An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph,”Powder Technol. 281,184–192 (2015).
[Crossref]

Lartiges, B.

Lazar, B.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

Lee, S.-H.

Levin, A.

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

Levis, A.

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

A. Levis, Y. Y. Schechner, and R. Talmon,“Statistical tomography of microscopic life,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2018), pp.6411–6420.
[Crossref]

A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.

A. Levis, Y. Y. Schechner, and A. B. Davis,“Multiplescattering microphysics tomography,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition,vol. 1(IEEE, 2017).

Martinez, J.-M.

Matusik, W.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

McMillan, L.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

Mobley, C. D.

C. D. Mobley,Light and Water: Radiative Transfer in Natural Waters(Academic,1994).

Moh, D. Y.

Mouchet, M.

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Mouillot, D.

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Narasimhan, S. G.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.

Nayar, S. K.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

Nguyen, X. H.

Nimmo-Smith, W. A. M.

Otsu, N.

N. Otsu,“A threshold selection method from gray-level histograms,”IEEE Transactions on Systems, Man, and Cybernetics 9,62–66 (1979).
[Crossref]

Ouillon, S.

Parker, E.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Pejrup, M.

J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
[Crossref]

Pharr, M.

M. Pharr, W. Jakob, and G. Humphreys,Physically Based Rendering: From Theory to Implementation(Morgan Kaufmann,2016).

Pinet, S.

Raffel, M.

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Rai, A. K.

A. K. Rai and A. Kumar,“Continuous measurement of suspended sediment concentration: Technological advancement and future outlook,”Measurement 76,209–227 (2015).
[Crossref]

Ramamoorthi, R.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

Raskar, R.

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

Reidenbach, M.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

Robert, K.

K. Robert and S. Juniper,“Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory,”Mar. Ecol. Prog. Ser. 453,137–149 (2012).
[Crossref]

Saxild-Hansen, M.

P. C. Hansen and M. Saxild-Hansen,“AIR tools—a MATLAB package of algebraic iterative reconstruction methods,”J. Comput. Appl. Math. 236,2167–2178 (2012).
[Crossref]

Scarano, F.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Schechner, Y.

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Schechner, Y. Y.

A. Aides, Y. Y. Schechner, V. Holodovsky, M. J. Garay, and A. B. Davis,“Multi sky-view 3D aerosol distribution recovery,”Opt. Express 21,25820–25833 (2013).
[Crossref] [PubMed]

T. Treibitz and Y. Y. Schechner,“Turbid scene enhancement using multi-directional illumination fusion,”IEEE Transactions on Image Process. 21,4662–4667 (2012).
[Crossref]

M. Sheinin and Y. Y. Schechner,“The next best underwater view,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2016), pp.3764–3773.

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

A. Levis, Y. Y. Schechner, and R. Talmon,“Statistical tomography of microscopic life,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2018), pp.6411–6420.
[Crossref]

M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.

A. Levis, Y. Y. Schechner, and A. B. Davis,“Multiplescattering microphysics tomography,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition,vol. 1(IEEE, 2017).

A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.

Schechner, Y.Y.

Y.Y. Schechner and N. Karpel,“Attenuating natural flicker patterns,” inProceedings of MTS/IEEE OCEANS/TECHNOOCEAN, vol.3(IEEE,2004), pp.1262–1268.

Shahi, S.

S. Shahi and E. Kuru,“An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph,”Powder Technol. 281,184–192 (2015).
[Crossref]

Shavit, U.

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Shaviti, U.

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Sheinin, M.

M. Sheinin and Y. Y. Schechner,“The next best underwater view,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2016), pp.3764–3773.

Shin, D. H.

Singh, H.

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

Snelgrove, P.

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

Snelgrove, P. V.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

Souza, A. J.

Statham, P.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Talmon, R.

A. Levis, Y. Y. Schechner, and R. Talmon,“Statistical tomography of microscopic life,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2018), pp.6411–6420.
[Crossref]

Tengberg, A.

A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
[Crossref]

Thompson, C.

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Timor, D. S.

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

Torfstien, A.

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Treibitz, T.

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

T. Treibitz and Y. Y. Schechner,“Turbid scene enhancement using multi-directional illumination fusion,”IEEE Transactions on Image Process. 21,4662–4667 (2012).
[Crossref]

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Tunnicliffe, V.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

Vainiger, A.

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

Valeur, J. R.

J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
[Crossref]

van Oudheusden, B. W.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

Vanni, M. J.

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Villar, R. E.

Villéger, S.

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Vo, M.

M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.

Wainright, S. C.

S. C. Wainright,“Stimulation of heterotrophic microplankton production by resuspended marine sediments,”Science 238,1710–1712 (1987).
[Crossref] [PubMed]

Wereley, S. T.

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Whitney, F.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

Wieneke, B.

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

Willert, C. E.

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

Woo, A.

J. Amanatides and A. Woo,“A fast voxel traversal algorithm for ray tracing,” inProceedings of Eurographics, (1987).

Yahel, G.

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
[Crossref]

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

Yahel, R.

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
[Crossref]

Appl. Opt. (2)

Aquatic Sci. (1)

S. Villéger, S. Brosse, M. Mouchet, D. Mouillot, and M. J. Vanni,“Functional ecology of fish: current approaches and future challenges,”Aquatic Sci. 79,783–801 (2017).
[Crossref]

Cont. Shelf Res. (1)

D. C. Fugate and C. T. Friedrichs,“Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST,”Cont. Shelf Res. 22,1867–1886 (2002).
[Crossref]

Estuarine, Coast. Shelf Sci. (1)

C. Thompson, F. Couceiro, G. Fones, R. Helsby, C. Amos, K. Black, E. Parker, N. Greenwood, P. Statham, and B. Kelly-Gerreyn,“In situ flume measurements of resuspension in the North Sea,” Estuarine, Coast. Shelf Sci. 94,77–88 (2011).
[Crossref]

Exp. Fluids (1)

G. E. Elsinga, F. Scarano, B. Wieneke, and B. W. van Oudheusden,“Tomographic Particle Image Velocimetry,”Exp. Fluids 41,933–947 (2006).
[Crossref]

Glob. Biogeochem. Cycles (1)

T. Katz, G. Yahel, R. Yahel, V. Tunnicliffe, B. Herut, P. Snelgrove, J. Crusius, and B. Lazar,“Groundfish overfishing, diatom decline, and the marine silica cycle: Lessons from Saanich Inlet, Canada, and the Baltic Sea cod crash,” Glob. Biogeochem. Cycles 23, 4032 (2009).
[Crossref]

IEEE Transactions on Image Process. (1)

T. Treibitz and Y. Y. Schechner,“Turbid scene enhancement using multi-directional illumination fusion,”IEEE Transactions on Image Process. 21,4662–4667 (2012).
[Crossref]

IEEE Transactions on Pattern Analysis Mach. Intell. (1)

T. Treibitz, Y. Schechner, C. Kunz, and H. Singh,“Flat refractive geometry,” IEEE Transactions on Pattern Analysis Mach. Intell. 34,51–65 (2012).
[Crossref]

IEEE Transactions on Systems, Man, and Cybernetics (1)

N. Otsu,“A threshold selection method from gray-level histograms,”IEEE Transactions on Systems, Man, and Cybernetics 9,62–66 (1979).
[Crossref]

J. Comput. Appl. Math. (1)

P. C. Hansen and M. Saxild-Hansen,“AIR tools—a MATLAB package of algebraic iterative reconstruction methods,”J. Comput. Appl. Math. 236,2167–2178 (2012).
[Crossref]

J. Exp. Mar. Biol. Ecol. (1)

A. Tengberg, E. Almroth, and P. Hall,“Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology,”J. Exp. Mar. Biol. Ecol. 285,119–142 (2003).
[Crossref]

Limnol. Oceanogr. (2)

R. Yahel, G. Yahel, and A. Genin,“Daily cycles of suspended sand at coral reefs: a biological control,”Limnol. Oceanogr. 47,1071–1083 (2002).
[Crossref]

T. Katz, G. Yahel, M. Reidenbach, V. Tunnicliffe, B. Herut, J. Crusius, F. Whitney, P. V. Snelgrove, and B. Lazar,“Resuspension by fish facilitates the transport and redistribution of coastal sediments,”Limnol. Oceanogr. 57,945–958 (2012).
[Crossref]

Mar. Ecol. Prog. Ser. (2)

K. Robert and S. Juniper,“Surface-sediment bioturbation quantified with cameras on the NEPTUNE Canada cabled observatory,”Mar. Ecol. Prog. Ser. 453,137–149 (2012).
[Crossref]

G. Yahel, R. Yahel, T. Katz, B. Lazar, B. Herut, and V. Tunnicliffe,“Fish activity: a major mechanism for sediment resuspension and organic matter remineralization in coastal marine sediments,”Mar. Ecol. Prog. Ser. 372,195–209 (2008).
[Crossref]

Mar. Freshw. Res. (1)

J. R. Valeur, A. Jensen, and M. Pejrup,“Turbidity, particle fluxes and mineralisation of carbon and nitrogen in a shallow coastal area,”Mar. Freshw. Res. 46,409–418 (1995).
[Crossref]

Measurement (1)

A. K. Rai and A. Kumar,“Continuous measurement of suspended sediment concentration: Technological advancement and future outlook,”Measurement 76,209–227 (2015).
[Crossref]

Opt. Express (4)

Powder Technol. (1)

S. Shahi and E. Kuru,“An experimental investigation of settling velocity of natural sands in water using Particle Image Shadowgraph,”Powder Technol. 281,184–192 (2015).
[Crossref]

Science (1)

S. C. Wainright,“Stimulation of heterotrophic microplankton production by resuspended marine sediments,”Science 238,1710–1712 (1987).
[Crossref] [PubMed]

Ultrason. imaging (1)

A. H. Andersen and A. C. Kak,“Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm,”Ultrason. imaging 6,81–94 (1984).
[Crossref] [PubMed]

Other (24)

3D Warehouse, Trimble,“Source of rendered camera model,”Available at https://3dwarehouse.sketchup.com/model/9a99ddf71fc253515561a71aee95364e/BlueViewMB1350onTripod

A. Almogi-Labin, R. Calvo, H. Elyashiv, R. Amit, Y. Harlavan, and H. Herut,“Sediment characterization of the Israeli Mediterranean shelf,” Geol. Surv. Isr. Rep. GSI/27/2012 Isr. Oceanogr. Limnol. Res. Rep. H68 (2012).

G. Bradski,“The OpenCV Library,”Dr. Dobb’s J. Softw. Tools(2000).

LLC Agisoft (2016).AgiSoft PhotoScan Professional, Version 1.2.6.Retrieved from http://www.agisoft.com/downloads/installer/

W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan,“Image-based visual hulls,” inProceedings of ACM Internationl Conference on Computer Graphics and Interactive Techniques,(ACM,2000), pp.369–374.

A. Levis, Y. Y. Schechner, and A. B. Davis,“Multiplescattering microphysics tomography,” inProceedings of IEEE Conference on Computer Vision and Pattern Recognition,vol. 1(IEEE, 2017).

A. Geva, Y. Y. Schechner, Y. Chernyak, and R. Gupta,“X-ray Computed Tomography Through Scatter,” inProceedings of The European Conference on Computer Vision (ECCV),(Springer,2018), pp.37–54.

S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen,“Acquiring scattering properties of participating media by dilution,” in Proceedings of ACM Transactions on Graphics,vol. 25(ACM,2006), pp.1003–1012.
[Crossref]

M. Alterman, Y. Y. Schechner, M. Vo, and S. G. Narasimhan,“Passive tomography of turbulence strength,” inProceedings of European Conference on Computer Vision,(Springer,2014), pp.47–60.

V. Holodovsky, Y. Y. Schechner, A. Levin, A. Levis, and A. Aides,“In-situ multi-view multi-scattering stochastic tomography,” inProceedings of IEEE International Conference on Computational Photography,(IEEE,2016), pp.1–12.

G. Yahel, M. Gilboa, S. Grossbard, A. Vainiger, T. Treibitz, Y. Schechner, U. Shavit, and T. Katz,“Biological activity: an overlooked, mechanism for sediment resuspension, transport, and modification in the ocean,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

M. Raffel, C. E. Willert, F. Scarano, C. J. Kähler, S. T. Wereley, and J. Kompenhans,Particle Image Velocimetry: A Practical Guide(Springer,2018).
[Crossref]

M. Gilboa, T. Katz, U. Shaviti, S. Grosbard, A. Torfstien, and G. Yahel,“Novel approach to measure the rate of sediment resuspension at the ocean and to estimate the contribution of fish activity to this process,” inProceedings of Particles in Europe Conference,(SEQUOIA,2018).

A. Levis, Y. Y. Schechner, and R. Talmon,“Statistical tomography of microscopic life,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2018), pp.6411–6420.
[Crossref]

C. D. Mobley,Light and Water: Radiative Transfer in Natural Waters(Academic,1994).

IDS GmbH,“Data sheet of UI-3260CP-C-HQ camera,”Available at https://en.ids-imaging.com/IDS/datasheet_pdf.php?sku=AB00696

Amazon,“Amazon Elastic Compute Cloud (Amazon EC2),”Available at https://aws.amazon.com/ec2/ .

J. Amanatides and A. Woo,“A fast voxel traversal algorithm for ray tracing,” inProceedings of Eurographics, (1987).

Y.Y. Schechner and N. Karpel,“Attenuating natural flicker patterns,” inProceedings of MTS/IEEE OCEANS/TECHNOOCEAN, vol.3(IEEE,2004), pp.1262–1268.

M. Sheinin and Y. Y. Schechner,“The next best underwater view,” inProceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,(IEEE/CVF,2016), pp.3764–3773.

A. Vainiger, Y. Y. Schechner, T. Treibitz, A. Avni, and D. S. Timor,“Underwater wide–field tomography of sediment resuspension,” inProceedings of Particles in Europe Conference, (SEQUOIA,2018).

M. Pharr, W. Jakob, and G. Humphreys,Physically Based Rendering: From Theory to Implementation(Morgan Kaufmann,2016).

W. Jakob,“Mitsuba renderer,”(2010). http://www.mitsuba-renderer.org .

A. Levis, Y. Y. Schechner, A. Aides, and A. B. Davis,“Airborne three-dimensional cloud tomography,” inProceedings of IEEE International Conference on Computer Vision,(IEEE,2015), pp.3379–3387.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The concept of an underwater optical tomography system. The volume includes water and a resuspended sediment cloud. There are n voxels. A line of sight corresponding to pixel p is LOSp.
Fig. 2
Fig. 2 Simulations. (a) Scenario illustration: the cameras are distributed uniformly on a 125° arch of height of 0.5 [m], and facing the cloud from a 3 [m] distance. Note: for visualization we used an open source 3D camera model [41]. (b) Representative images of several side views (water images IWater, cloud images I, optical depth images τ in the green channel). (c) The reconstructed β ^ Sed of the cloud . (d) Reconstruction errors vs. the number of IDS UI3260xCP-C cameras.
Fig. 3
Fig. 3 (a) System design. (b) The camera housing is made of polycarbonate resin, sealed using a flat–port, and contains: an ODROID XU-4 computer, an IDS UI3260xCP-C camera with Tamron M112FM12 12 [mm] lens, Li-ion batteries and a nano USB WiFi adapter.
Fig. 4
Fig. 4 (a) Side view of the system outside of the pool. The nozzle emerges from the middle of the screen, and the cameras’ rig is centered above the screen at a height of 2.5 [m]. (b) Top view of the system submerged in a seawater pool. (c) Submerged screen and active calibration board.
Fig. 5
Fig. 5 Experiment: (a) Representative images of two cameras. Each camera yields a clear water image IWater, an image having resuspension I; The optical depth τ in the green channel; A pruned optical depth image τmasked. (b) Initial reconstruction β ^ Sed ( 0 ) of the cloud in the green channel. (c) Final reconstruction β ^ Sed of the cloud in the green channel.
Fig. 6
Fig. 6 (a) The estimated mass of a resuspension event, after each resuspension initiation. Each curve averages two experiment repetitions (shown as ∗ and ◦). (b) Average reconstructed mass of 30 [ mgr cm 3 ] source suspension density ( μ ^ total , 1 Sed) vs. average reconstructed mass of 22.5 [ mgr cm 3 ] source suspension density ( μ ^ total , 2 Sed).
Fig. 7
Fig. 7 (a) An RGB image of the cloud, 46 [sec] after the cloud’s initiation. (b) The estimated optical depth τ in the green channel. The values of τ are presented in a false-color palette manner. Negative values beyond screen borders are due to scattered light contributing to measured radiance.
Fig. 8
Fig. 8 Calibration results of βSed vs. ρSed for RGB channels. The non-linear domain is due to multiple-scattering [49]. The images demonstrate the intensity attenuation of the transmitted light beam, for increasing particle density.
Fig. 9
Fig. 9 (a) Light path in a water tank from the entry aperture, through a glass beaker with particle suspension, to the camera side. (b) Top-side view. (c) Front view. (d) Water image IWater .

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

i p Water i p ( 0 ) exp [ X LOS p β Water d X ] + i p Ambient [ W m 2 sr ] .
β Water β A Water + β S Water [ m 1 ] ,
ϖ Water β S Water β A Water + β S Water .
i p = i p ( 0 ) exp [ X LOS p ( β Water + β Sed ( X ) ) d X ] + i p Ambient [ W m 2 sr ] .
τ p X LOS p β Sed ( X ) d X .
τ p = ln ( i p i p Ambient i p Water i p Ambient ) .
τ p v a p , v β v Sed α p β Sed .
τ = A β Sed .
β ^ Sed arg min β Sed ( A β Sed τ 2 2 + α β Sed 2 2 ) s . t β Sed 0 .
μ v Sed = ρ v Mass ϑ [ gr ] .
β v Sed = σ ρ v # [ m 1 ] .
β v Sed b ρ v Mass [ m 1 ] .
μ ^ v Sed = ϑ b β ^ v Sed [ gr ] ,
μ ^ total Sed = v μ ^ v Sed [ gr ] .
δ = β ^ Sed 1 β Sed 1 β Sed 1 ,
2 = 1 n β ^ Sed β Sed 2 2 max ( β Sed ) .
β Sed = 1 l ln ( i rec Water i rec ) ,

Metrics