Abstract

Broadband thermal radiation sources are critical for various applications including spectroscopy and electricity generation. However, due to the difficulty in simultaneously achieving high absorptivity and low thermal mass these sources are inefficient. We show a platform that enables one to obtain enhanced emission by coupling a thermal emitter to an optical cavity. We experimentally demonstrate broadband enhancement of thermal emission between λ ~2 ̶ 4.2 μm using an inherently poor thermal emitter consisting of tens of nanometers thick SiC film with 10% emissivity (εSiC ~0.1). We measure over twofold enhancement of total emission power over the entire spectral band and threefold enhancement of thermal emission over 3 to 3.4 μm. Our platform has the potential to enable development of ideal blackbody sources operating at substantially lower heating powers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermal switching of the enhanced transmission of terahertz radiation through subwavelength apertures

J. Gómez Rivas, P. Haring Bolivar, and H. Kurz
Opt. Lett. 29(14) 1680-1682 (2004)

Highly directional radiation generated by a tungsten thermal source

M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J.-L. Pelouard
Opt. Lett. 30(19) 2623-2625 (2005)

Nanophotonic control of thermal radiation for energy applications [Invited]

Wei Li and Shanhui Fan
Opt. Express 26(12) 15995-16021 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
    [Crossref]
  2. O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
    [Crossref] [PubMed]
  3. M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
    [Crossref]
  4. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
    [Crossref] [PubMed]
  5. J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
    [Crossref]
  6. S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
    [Crossref]
  7. Y. A. Çengel, Heat Transfer: A Practical Approach (McGraw-Hill, 2004).
  8. I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
    [Crossref]
  9. L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
    [Crossref]
  10. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [Crossref] [PubMed]
  11. M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
    [Crossref]
  12. S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
    [Crossref] [PubMed]
  13. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
    [Crossref]
  14. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
    [Crossref]
  15. T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
    [Crossref] [PubMed]
  16. Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
    [Crossref] [PubMed]
  17. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [Crossref]
  18. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
    [Crossref]
  19. J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
    [Crossref]
  20. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
    [Crossref]
  21. C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
    [Crossref]
  22. P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
    [Crossref] [PubMed]
  23. P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
    [Crossref]
  24. E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
    [Crossref]
  25. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
    [Crossref]
  26. G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185(2), 275–301 (1860).
    [Crossref]
  27. J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).
  28. R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
    [Crossref] [PubMed]
  29. M. Planck and M. Masius, The Theory of Heat Radiation (P. Blakiston’s Son & Co., n.d.).
  30. P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
    [Crossref]
  31. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
    [Crossref]
  32. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  33. M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
    [Crossref]
  34. H. O. McMahon, “Thermal radiation from partially transparent reflecting bodies,” J. Opt. Soc. Am. 40(6), 376–380 (1950).
    [Crossref]
  35. H. F. Winters and J. W. Coburn, “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett. 34(1), 70–73 (1979).
    [Crossref]
  36. A. Yariv and P. Yeh, Photonics (Oxford University, 2006).
  37. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5(10), 1550–1567 (1966).
    [Crossref] [PubMed]

2018 (1)

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

2016 (3)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

2015 (1)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

2014 (3)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

2013 (3)

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

2012 (3)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
[Crossref]

2011 (2)

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

2009 (2)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
[Crossref]

2008 (2)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

2007 (1)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

2006 (1)

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

2005 (1)

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
[Crossref]

2003 (1)

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

2002 (2)

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

1999 (1)

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

1998 (1)

P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
[Crossref]

1988 (1)

P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
[Crossref]

1979 (1)

H. F. Winters and J. W. Coburn, “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett. 34(1), 70–73 (1979).
[Crossref]

1966 (1)

1950 (1)

1860 (1)

G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185(2), 275–301 (1860).
[Crossref]

Asano, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Aschaber, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

Balin, I.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Basu, S.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
[Crossref]

Bermel, P.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Biswas, R.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Boerner, V.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

Bouchon, P.

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

Brucoli, G.

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

Carminati, R.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Celanovic, I.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
[Crossref]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Chang, Y.-T.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

Chen, G.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Chen, Y.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

Coburn, J. W.

H. F. Winters and J. W. Coburn, “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett. 34(1), 70–73 (1979).
[Crossref]

Cornelius, C. M.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Dahan, N.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

De Zoysa, M.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Dowling, J. P.

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Dyachenko, P. N.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Edalatpour, S.

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

Eich, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

El-Kady, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Fan, S.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Francoeur, M.

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
[Crossref]

Frischwasser, K.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Gebhart, B.

P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
[Crossref]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Ghebrebrhan, M.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Gorodetski, Y.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Greffet, J.-J.

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Gu, M.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Han, S. E.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Hasman, E.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Hesketh, P. J.

P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
[Crossref]

Ho, W. O.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Hodgkinson, J.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Hossain, M. M.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Ilic, O.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

Inoue, T.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Jacob, Z.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Jia, B.

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

Joannopoulos, J. D.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Joulain, K.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
[Crossref]

Kirchhoff, G.

G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185(2), 275–301 (1860).
[Crossref]

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Kleiner, V.

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

Kogelnik, H.

Krekeler, T.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Lang, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Lee, B. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

Lee, S.-C.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Li, T.

Lipson, M.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Luther, J.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

Mainguy, S.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Marquier, F.

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

Mason, J. A.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

McMahon, H. O.

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Mochizuki, K.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Molesky, S.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Mulet, J.-P.

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Noda, S.

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Norris, D. J.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Oskooi, A.

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Perreault, D.

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
[Crossref]

Petrov, A. Y.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Pigeat, P.

P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
[Crossref]

Pinar Mengüç, M.

M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
[Crossref]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

Ritter, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Rouxel, D.

P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
[Crossref]

Saffell, J. R.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Sakat, E.

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Schlemmer, C.

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

Sergeant, N. P.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Skauli, T.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Smith, R.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Smith, S.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Soljacic, M.

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Stein, A.

S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

St-Gelais, R.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Störmer, M.

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

Tatam, R. P.

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

Vaillon, R.

M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Wang, H.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

Wang, X. J.

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

Wasserman, D.

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

Weber, B.

P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
[Crossref]

Winters, H. F.

H. F. Winters and J. W. Coburn, “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett. 34(1), 70–73 (1979).
[Crossref]

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

Yeng, Y. X.

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

Yu, Z.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Zemel, J. N.

P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
[Crossref]

Zhang, G.

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
[Crossref]

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

Zhu, L.

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

M. M. Hossain, B. Jia, and M. Gu, “A metamaterial emitter for highly efficient radiative cooling,” Adv. Opt. Mater. 3(8), 1047–1051 (2015).
[Crossref]

AIP Conf. Proc. (1)

C. Schlemmer, J. Aschaber, V. Boerner, and J. Luther, “Thermal stability of micro‐structured selective tungsten emitters,” AIP Conf. Proc. 653(1), 164–173 (2003).
[Crossref]

Ann. Phys. (1)

G. Kirchhoff, “Ueber das verhältniss zwischen dem emissionsvermögen und dem absorptionsvermögen der körper für wärme und licht,” Ann. Phys. 185(2), 275–301 (1860).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[Crossref]

H. F. Winters and J. W. Coburn, “The etching of silicon with XeF2 vapor,” Appl. Phys. Lett. 34(1), 70–73 (1979).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO_2 sensing,” Appl. Phys. Lett. 105(12), 121107 (2014).
[Crossref]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[Crossref]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow-band infrared emitters,” Appl. Phys. Lett. 81(25), 4685–4687 (2002).
[Crossref]

J. A. Mason, S. Smith, and D. Wasserman, “Strong absorption and selective thermal emission from a midinfrared metamaterial,” Appl. Phys. Lett. 98(24), 241105 (2011).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92(19), 193101 (2008).
[Crossref]

Int. J. Heat Mass Transfer (1)

L. P. Wang, B. J. Lee, X. J. Wang, and Z. M. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric Fabry–Perot resonance cavities,” Int. J. Heat Mass Transfer 52(13–14), 3024–3031 (2009).
[Crossref]

J. Heat Transfer (3)

P. J. Hesketh, B. Gebhart, and J. N. Zemel, “Measurements of the spectral and directional emission from microgrooved silicon surfaces,” J. Heat Transfer 110(3), 680–686 (1988).
[Crossref]

E. Hasman, V. Kleiner, N. Dahan, Y. Gorodetski, K. Frischwasser, and I. Balin, “Manipulation of thermal emission by use of micro and nanoscale structures,” J. Heat Transfer 134(3), 031023 (2012).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a Fabry–Perot cavity resonator,” J. Heat Transfer 134(7), 072701 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transf. (2)

M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf. 110(18), 2002–2018 (2009).
[Crossref]

S. Edalatpour and M. Francoeur, “Size effect on the emissivity of thin films,” J. Quant. Spectrosc. Radiat. Transf. 118, 75–85 (2013).
[Crossref]

Nat. Commun. (2)

P. N. Dyachenko, S. Molesky, A. Y. Petrov, M. Störmer, T. Krekeler, S. Lang, M. Ritter, Z. Jacob, and M. Eich, “Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions,” Nat. Commun. 7(1), 11809 (2016).
[Crossref] [PubMed]

Z. Yu, N. P. Sergeant, T. Skauli, G. Zhang, H. Wang, and S. Fan, “Enhancing far-field thermal emission with thermal extraction,” Nat. Commun. 4(1), 1730 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

T. Inoue, M. De Zoysa, T. Asano, and S. Noda, “Realization of dynamic thermal emission control,” Nat. Mater. 13(10), 928–931 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, “Near-field radiative heat transfer between parallel structures in the deep subwavelength regime,” Nat. Nanotechnol. 11(6), 515–519 (2016).
[Crossref] [PubMed]

O. Ilic, P. Bermel, G. Chen, J. D. Joannopoulos, I. Celanovic, and M. Soljačić, “Tailoring high-temperature radiation and the resurrection of the incandescent source,” Nat. Nanotechnol. 11(4), 320–324 (2016).
[Crossref] [PubMed]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9(2), 126–130 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, and S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012).
[Crossref]

Nature (1)

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[Crossref] [PubMed]

Phys. Rev. A (2)

M. Ghebrebrhan, P. Bermel, Y. X. Yeng, I. Celanovic, M. Soljačić, and J. D. Joannopoulos, “Tailoring thermal emission via Q matching of photonic crystal resonances,” Phys. Rev. A 83(3), 033810 (2011).
[Crossref]

C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59(6), 4736–4746 (1999).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B Condens. Matter Mater. Phys. 57(15), 9293–9300 (1998).
[Crossref]

I. Celanovic, D. Perreault, and J. Kassakian, “Resonant-cavity enhanced thermal emission,” Phys. Rev. B Condens. Matter Mater. Phys. 72(7), 075127 (2005).
[Crossref]

Phys. Rev. Lett. (1)

S. E. Han, A. Stein, and D. J. Norris, “Tailoring Self-Assembled Metallic Photonic crystals for modified thermal emission,” Phys. Rev. Lett. 99(5), 053906 (2007).
[Crossref] [PubMed]

Phys. Rev. X (1)

J.-J. Greffet, P. Bouchon, G. Brucoli, E. Sakat, and F. Marquier, “Generalized Kirchhoff law,” Phys. Rev. X 8(2), 021008 (2018).

Sens. Actuators B Chem. (1)

J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor,” Sens. Actuators B Chem. 186, 580–588 (2013).
[Crossref]

Other (4)

Y. A. Çengel, Heat Transfer: A Practical Approach (McGraw-Hill, 2004).

M. Planck and M. Masius, The Theory of Heat Radiation (P. Blakiston’s Son & Co., n.d.).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

A. Yariv and P. Yeh, Photonics (Oxford University, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Effect of silicon carbide film-thickness on thermal output of cavity-coupled emitter. Scheme of (a) a bare emitter, (b) a cavity-coupled emitter and, (c) their simulated normalized total emission as a function of emitter thickness. The blue line represents emission of the bare emitter while the red line is for the cavity-coupled emitter. For a cavity-coupled emitter the back mirror allows recycling of thermal light which goes back and forth several times before exiting the cavity. According to Kirchhoff’s law this redirected radiation is absorbed and re-emitted to maintain thermodynamic equilibrium. The peak emission occurs for a thickness of ~2 μm where optimal impedance matching occurs. For higher thickness (i.e. higher absorptivity) the enhancement reduces and eventually reaches unity. The total power is normalized with respect to that from a blackbody at equivalent temperature. The simulation data is for a cavity length L ~100 mm and back mirror reflectivity R ~0.99.
Fig. 2
Fig. 2 Microcrystalline SiC thin-film thermal emitter. (a) Microscope image of the fabricated μC-SiC membrane with a concentric platinum (Pt) heater near its periphery (circular heater: radius = 370 μm, width = 20 μm). The membrane is heated by applying electrical power to the Pt heater which allows heating of the suspended structure while minimizing conductive losses into the substrate. (b) A three-dimensional schematic of a hot suspended SiC membrane with a color map of temperature distribution predicted using FEM based heat transfer. The suspended region of the membrane remains hot while there is a nearly step-like transition of the temperature profile from hot central region to the blue (cold) temperatures in the non-suspended region.
Fig. 3
Fig. 3 Measurement setup. (a) Schematic of the experimental setup. The emitter (E) and mirror (M1) form the cavity. The cold cavity is initially aligned using a 1550 nm wavelength laser. The beam splitter (BS) is used to split the input alignment laser and send it to the cavity for alignment. Lens L1 acts as the mode matching lens for the alignment laser. The mirrors M2 and M3 are used to align the beam to the monochromator (G). Lens L2 is used to focus the light to the input while L3 is used to collect the spectrally filtered light from the monochromator. The emitter is heated up by supplying electrical power using a source meter. Using lens L1 the outgoing thermal light from cavity is collected and steered to the InSb detector via the monochromator. The monochromator grating is spatially tuned to record the spectral power distribution at the detector. (b) Measured reflectivity of the cavity as a function of laser frequency tuning (ν0 + Δν), where ν0 is the laser center frequency. Scatter dots represent the measured data and solid line represents theoretical fit.
Fig. 4
Fig. 4 Measurement results of thermal output from a cavity-coupled thin-film thermal emitter. (a) Recorded spectral power distribution from the cavity coupled thermal emitter and bare emitter at the same heating power. The shaded regions around the fitted-solid lines represent the standard deviation recorded over repeated measurements, while the scatter points show a typical data set. The emission of the cavity coupled emitter is significantly enhanced relative to the emission of a bare emitter. Inset: Ratio of recorded spectral power from the cavity coupled emitter and bare emitter showing enhancement. The spectrum shown here is normalized with respect to the emission peak of bare emitter. The measurement is performed using a liquid-nitrogen-cooled InSb detector with a roll-off a t ~4.2 μm. More than threefold enhancement is seen at short wavelengths. (b) Measured change in temperature of μC-SiC membrane emitter for applied electrical power for cavity coupled emitter and bare emitter.
Fig. 5
Fig. 5 Effect of impedance matching conditions on the thermal output of cavity-coupled emitter. (a) Recorded spectral power distribution from the cavity coupled thermal emitter with different amount of added losses. The addition of excess losses to the cavity modifies the impedance matching conditions leading to flat enhancement across the entire band. The spectrum shown here is normalized with respect to the bare emitter emission peak. (b) Top - Predicted relative shift in maximum emission wavelength with respect to bare emitter peak, due to modification of cavity conditions. The vertical guide lines represent the measurement with respect to the theoretically predicted data set. Bottom - Predicted thermal enhancement as a function of back mirror reflectivity. The reduction of effective back mirror reflectivity can be seen as addition of cold-losses to the cavity.
Fig. 6
Fig. 6 Real part of refractive index (nr) and imaginary part of refractive index (ki) for SiC in mid-IR region of the spectrum, measured using ellipsometry. Complex refractive index is given by n = nr + jki

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S( λ,T )= ε eff (λ)Θ(λ,T) 2c λ 4
n(ω)= ε ·( 1+ ( ω L 2 ω T 2 ) ( ω T 2 ω 2 iωΓ) ω D 2 ( ω 2 +iω Γ D ) )

Metrics