Abstract

A dual-stimuli polarizer-free dye-doped liquid crystal (LC) dimmer is demonstrated. The LC composition consists of photo-stable chiral agent, photosensitive azobenzene, and dichroic dye in a nematic host with positive dielectric anisotropy. Upon UV exposure, the LC directors and dye molecules turn from initially vertical alignment (high transmittance state) to twisted fingerprint structure (low transmittance state). The reversal process is accelerated by combining a longitudinal electric field to unwind the LC directors from twisted fingerprint to homeotropic state, and a red light to transform the cis azobenzene back to trans. This device can be used as a smart dimmer to enhance the ambient contrast ratio for augmented reality displays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photo-responsive dye-doped liquid crystals for smart windows

Javed Rouf Talukder, Yun-Han Lee, and Shin-Tson Wu
Opt. Express 27(4) 4480-4487 (2019)

Photo-switchable chiral liquid crystal with optical tristability enabled by a photoresponsive azo-chiral dopant

Yu-Cheng Hsiao, Kuan-Chung Huang, and Wei Lee
Opt. Express 25(3) 2687-2693 (2017)

Submillisecond-response nematic liquid crystals for augmented reality displays

Haiwei Chen, Fangwang Gou, and Shin-Tson Wu
Opt. Mater. Express 7(1) 195-201 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(12), 287–309 (2000).
  2. J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
    [Crossref] [PubMed]
  3. T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
    [Crossref]
  4. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  5. P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
    [Crossref]
  6. X. Wang and P. S. Dunston, “Comparative effectiveness of mixed reality-based virtual environments in collaborative design,” IEEE Trans. Syst., Man, Cybern. Syst. Part C 41(3), 284–296 (2011).
  7. H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
    [Crossref] [PubMed]
  8. R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
    [Crossref]
  9. S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
    [Crossref] [PubMed]
  10. R. Zhu, G. Tan, J. Yuan, and S. T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
    [Crossref] [PubMed]
  11. R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
    [Crossref]
  12. E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
    [Crossref] [PubMed]
  13. A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
    [Crossref]
  14. Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
    [Crossref]
  15. J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
    [Crossref]
  16. S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
    [Crossref] [PubMed]
  17. W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
    [Crossref]
  18. A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
    [Crossref]
  19. J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
    [Crossref]
  20. Y.-H. Lin, J.-M. Yang, Y.-R. Lin, S.-C. Jeng, and C.-C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
    [Crossref] [PubMed]
  21. G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, “Characteristics of color optical shutter with dye-doped polymer network liquid crystal,” Opt. Lett. 36(5), 754–756 (2011).
    [Crossref] [PubMed]
  22. C.-T. Wang and T.-H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal [Invited],” Opt. Mater. Express 1(8), 1457–1462 (2011).
    [Crossref]
  23. Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
    [Crossref]
  24. J. R. Talukder, Y. H. Lee, and S.-T. Wu, “Photo-responsive dye-doped liquid crystals for smart windows,” Opt. Express 27(4), 4480–4487 (2019).
    [Crossref] [PubMed]
  25. D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
    [Crossref]
  26. A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
    [Crossref]
  27. C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
    [Crossref]
  28. Y. H. Lee, L. Wang, H. Yang, and S.-T. Wu, “Photo-induced handedness inversion with opposite-handed cholesteric liquid crystal,” Opt. Express 23(17), 22658–22666 (2015).
    [Crossref] [PubMed]
  29. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
    [Crossref] [PubMed]
  30. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [Crossref]
  31. J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5(1), 14654 (2015).
    [Crossref] [PubMed]
  32. S. Kundu and S.-W. Kang, “Photo-stimulated phase and anchoring transitions of chiral azo-dye doped nematic liquid crystals,” Opt. Express 21(25), 31324–31329 (2013).
    [Crossref] [PubMed]
  33. M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
    [Crossref] [PubMed]
  34. B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).
  35. U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Liquid Crystals XIII, ed. by I.-C. Khoo, Proc. SPIE, 7414, 74140L (2009).
  36. Y.-C. Liu, K.-T. Cheng, H.-F. Chen, and A. Y.-G. Fuh, “Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications,” Opt. Express 22(4), 4404–4411 (2014).
    [Crossref] [PubMed]
  37. Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
    [Crossref]

2019 (2)

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

J. R. Talukder, Y. H. Lee, and S.-T. Wu, “Photo-responsive dye-doped liquid crystals for smart windows,” Opt. Express 27(4), 4480–4487 (2019).
[Crossref] [PubMed]

2016 (3)

R. Zhu, G. Tan, J. Yuan, and S. T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
[Crossref] [PubMed]

2015 (6)

P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
[Crossref]

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
[Crossref]

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Y. H. Lee, L. Wang, H. Yang, and S.-T. Wu, “Photo-induced handedness inversion with opposite-handed cholesteric liquid crystal,” Opt. Express 23(17), 22658–22666 (2015).
[Crossref] [PubMed]

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5(1), 14654 (2015).
[Crossref] [PubMed]

2014 (7)

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Y.-C. Liu, K.-T. Cheng, H.-F. Chen, and A. Y.-G. Fuh, “Photo- and electro-isomerization of azobenzenes based on polymer-dispersed liquid crystals doped with azobenzenes and their applications,” Opt. Express 22(4), 4404–4411 (2014).
[Crossref] [PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

2013 (1)

2011 (4)

G. H. Lee, K. Y. Hwang, J. E. Jang, Y. W. Jin, S. Y. Lee, and J. E. Jung, “Characteristics of color optical shutter with dye-doped polymer network liquid crystal,” Opt. Lett. 36(5), 754–756 (2011).
[Crossref] [PubMed]

C.-T. Wang and T.-H. Lin, “Bistable reflective polarizer-free optical switch based on dye-doped cholesteric liquid crystal [Invited],” Opt. Mater. Express 1(8), 1457–1462 (2011).
[Crossref]

X. Wang and P. S. Dunston, “Comparative effectiveness of mixed reality-based virtual environments in collaborative design,” IEEE Trans. Syst., Man, Cybern. Syst. Part C 41(3), 284–296 (2011).

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

2010 (1)

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

2008 (2)

Y.-H. Lin, J.-M. Yang, Y.-R. Lin, S.-C. Jeng, and C.-C. Liao, “A polarizer-free flexible and reflective electrooptical switch using dye-doped liquid crystal gels,” Opt. Express 16(3), 1777–1785 (2008).
[Crossref] [PubMed]

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

2007 (1)

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

2005 (2)

H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
[Crossref] [PubMed]

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

2004 (2)

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

2001 (1)

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

2000 (1)

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(12), 287–309 (2000).

1994 (1)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

1990 (1)

Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
[Crossref]

1982 (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Amb, C. M.

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

An, Z.

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

Babiarz, J. E.

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Ballarotto, V. W.

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Baratoff, G.

H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
[Crossref] [PubMed]

Beaujuge, P. M.

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Bin, J.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5(1), 14654 (2015).
[Crossref] [PubMed]

Bobrovsky, A.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Boiko, N.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Boletsis, C.

P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
[Crossref]

Bunning, T. J.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Chan, C. T.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Chen, H.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Chen, H.-F.

Chen, R.

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

Cheng, K.-T.

Coutino, P.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Duffy, A.

A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
[Crossref]

Dunston, P. S.

X. Wang and P. S. Dunston, “Comparative effectiveness of mixed reality-based virtual environments in collaborative design,” IEEE Trans. Syst., Man, Cybern. Syst. Part C 41(3), 284–296 (2011).

Dyer, A. L.

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

Fang, X.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Feuerstein, M.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Fuchs, H.

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(12), 287–309 (2000).

Fuh, A. Y.-G.

Fujishima, A.

Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
[Crossref]

Ge, W.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Ghosh, A.

A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
[Crossref]

Glasser, J.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Green, L.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Hashimoto, K.

Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
[Crossref]

Heo, J.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Hoshi, K.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Hu, X.

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
[Crossref] [PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

Hua, H.

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
[Crossref] [PubMed]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

Huh, J.-W.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Hurley, S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Hwang, K. Y.

Jang, J. E.

Jeng, S.-C.

Jin, Y. W.

Jung, J. E.

Kang, S.-W.

Kerszulis, J. A.

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Kobayashi, E.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Kobayashi, N.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Kosa, T.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Kourouthanassis, P. E.

P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
[Crossref]

Kundu, S.

Kurihara, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Lee, G. H.

Lee, S.

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
[Crossref] [PubMed]

Lee, S. Y.

Lee, Y. H.

Lekakos, G.

P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
[Crossref]

Li, M.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Li, Q.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Li, W.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Liao, C.-C.

Liao, H.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Lin, T. H.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Lin, T.-H.

Lin, Y. H.

Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Lin, Y.-H.

Lin, Y.-R.

Liu, Y.-C.

Liu, Z. F.

Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
[Crossref]

Llordés, A.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Lounis, S. D.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Lu, G.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Mathews, M.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Milliron, D. J.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Nakamura, K.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Navab, N.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Nonaka, T.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Norton, B.

A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
[Crossref]

Oates, W. S.

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5(1), 14654 (2015).
[Crossref] [PubMed]

Phuong, D.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Regenbrecht, H.

H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
[Crossref] [PubMed]

Ren, H. W.

Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Reynolds, J. R.

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Rolland, J. P.

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(12), 287–309 (2000).

Runnerstrom, E. L.

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Sakuma, I.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Sheng, P.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Shibaev, V.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Sielhorst, T.

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

Suenaga, H.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Tabiryan, N. V.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Talukder, J. R.

Tan, G.

R. Zhu, G. Tan, J. Yuan, and S. T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Tsuboi, A.

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

Urbas, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Vasilyeva, S. V.

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

Wang, C. T.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Wang, C.-T.

Wang, J.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Wang, L.

Wang, S.

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Wang, X.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

X. Wang and P. S. Dunston, “Comparative effectiveness of mixed reality-based virtual environments in collaborative design,” IEEE Trans. Syst., Man, Cybern. Syst. Part C 41(3), 284–296 (2011).

Weisbuch, C.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Wen, W.

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Wendorff, J.

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

White, T. J.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Wilke, W.

H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
[Crossref] [PubMed]

Wu, S. T.

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

R. Zhu, G. Tan, J. Yuan, and S. T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Wu, S.-T.

Wu, Y. C.

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

Yang, B.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Yang, D. K.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yang, D.-K.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

Yang, H.

Yang, J.-M.

Yang, L.

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

Yaniv, Z.

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Yin, K.

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

Yoon, T.-H.

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Yuan, J.

Zeldovich, B. Y.

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Zhan, T.

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

Zhang, S. X.-A.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Zhang, W.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Zhang, Y.-M.

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Zhu, R.

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

R. Zhu, G. Tan, J. Yuan, and S. T. Wu, “Functional reflective polarizer for augmented reality and color vision deficiency,” Opt. Express 24(5), 5431–5441 (2016).
[Crossref] [PubMed]

Zola, R. S.

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

S. V. Vasilyeva, P. M. Beaujuge, S. Wang, J. E. Babiarz, V. W. Ballarotto, and J. R. Reynolds, “Material strategies for black-to-transmissive window-type polymer electrochromic devices,” ACS Appl. Mater. Interfaces 3(4), 1022–1032 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

R. Chen, Y. H. Lee, T. Zhan, K. Yin, Z. An, and S. T. Wu, “Multi-stimuli-responsive self-organized liquid crystal Bragg gratings,” Adv. Opt. Mater. 7(9), 1900101 (2019).
[Crossref]

AIP Adv. (1)

J. Heo, J.-W. Huh, and T.-H. Yoon, “Fast-switching initially-transparent liquid crystal light shutter with crossed patterned electrodes,” AIP Adv. 5(4), 047118 (2015).
[Crossref]

Appl. Energy (1)

A. Ghosh, B. Norton, and A. Duffy, “Measured overall heat transfer coefficient of a suspended particle device switchable glazing,” Appl. Energy 159, 362–369 (2015).
[Crossref]

Appl. Phys. Lett. (2)

D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, “Cholesteric reflective display: drive scheme and contrast,” Appl. Phys. Lett. 64(15), 1905–1907 (1994).
[Crossref]

Y. H. Lin, H. W. Ren, and S. T. Wu, “High contrast polymer-dispersed liquid crystal in a 90° twisted cell,” Appl. Phys. Lett. 84(20), 4083–4085 (2004).
[Crossref]

Chem. Commun. (Camb.) (1)

E. L. Runnerstrom, A. Llordés, S. D. Lounis, and D. J. Milliron, “Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals,” Chem. Commun. (Camb.) 50(73), 10555–10572 (2014).
[Crossref] [PubMed]

Chem. Mater. (2)

A. Tsuboi, K. Nakamura, and N. Kobayashi, “Multicolor electrochromism showing three primary color states (cyan–magenta–yellow) based on size-and shape-controlled silver nanoparticles,” Chem. Mater. 26(22), 6477–6485 (2014).
[Crossref]

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[Crossref]

Dyes Pigments (1)

C. T. Wang, Y. C. Wu, and T. H. Lin, “Photo-controllable tristable optical switch based on dye-doped liquid crystal,” Dyes Pigments 103, 21–24 (2014).
[Crossref]

IEEE Comput. Graph. Appl. (1)

H. Regenbrecht, G. Baratoff, and W. Wilke, “Augmented reality projects in the automotive and aerospace industries,” IEEE Comput. Graph. Appl. 25(6), 48–56 (2005).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

J. Wang, H. Suenaga, K. Hoshi, L. Yang, E. Kobayashi, I. Sakuma, and H. Liao, “Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery,” IEEE Trans. Biomed. Eng. 61(4), 1295–1304 (2014).
[Crossref] [PubMed]

IEEE Trans. Syst., Man, Cybern. Syst. Part C (1)

X. Wang and P. S. Dunston, “Comparative effectiveness of mixed reality-based virtual environments in collaborative design,” IEEE Trans. Syst., Man, Cybern. Syst. Part C 41(3), 284–296 (2011).

IEEE Trans. Vis. Comput. Graph. (1)

S. Lee, X. Hu, and H. Hua, “Effects of optical combiner and IPD change for convergence on near-field depth perception in an optical see-through HMD,” IEEE Trans. Vis. Comput. Graph. 22(5), 1540–1554 (2016).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc. 129(43), 12908–12909 (2007).
[Crossref] [PubMed]

M. Mathews, R. S. Zola, S. Hurley, D.-K. Yang, T. J. White, T. J. Bunning, and Q. Li, “Light-driven reversible handedness inversion in self-organized helical superstructures,” J. Am. Chem. Soc. 132(51), 18361–18366 (2010).
[Crossref] [PubMed]

J. Disp. Technol. (1)

T. Sielhorst, M. Feuerstein, and N. Navab, “Advanced medical displays: a literature review of augmented reality,” J. Disp. Technol. 4(4), 451–467 (2008).
[Crossref]

J. Soc. Inf. Disp. (1)

R. Zhu, H. Chen, T. Kosa, P. Coutino, G. Tan, and S. T. Wu, “High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer,” J. Soc. Inf. Disp. 24(4), 229–233 (2016).
[Crossref]

Light Sci. Appl. (1)

Y.-M. Zhang, X. Wang, W. Zhang, W. Li, X. Fang, B. Yang, M. Li, and S. X.-A. Zhang, “A single-molecule multicolor electrochromic device generated through medium engineering,” Light Sci. Appl. 4(2), e249 (2015).
[Crossref]

Liq. Cryst. (1)

A. Bobrovsky, N. Boiko, V. Shibaev, and J. Wendorff, “Photoinduced textural and optical changes in a cholesteric copolymer with azobenzene-containing side groups,” Liq. Cryst. 31(3), 351–359 (2004).
[Crossref]

Macromolecules (1)

J. A. Kerszulis, C. M. Amb, A. L. Dyer, and J. R. Reynolds, “Follow the yellow brick road: structural optimization of vibrant yellow-to-transmissive electrochromic conjugated polymers,” Macromolecules 47(16), 5462–5469 (2014).
[Crossref]

Multimedia Tools Appl. (1)

P. E. Kourouthanassis, C. Boletsis, and G. Lekakos, “Demystifying the design of mobile augmented reality applications,” Multimedia Tools Appl. 74(3), 1045–1066 (2015).
[Crossref]

Nanotechnology (1)

W. Wen, C. Weisbuch, D. Phuong, G. Lu, W. Ge, C. T. Chan, and P. Sheng, “Neutral nanoparticle-based display,” Nanotechnology 16(4), 598–601 (2005).
[Crossref]

Nature (1)

Z. F. Liu, K. Hashimoto, and A. Fujishima, “Photoelectrochemical information storage using an azobenzene derivative,” Nature 347(6294), 658–660 (1990).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Opt. Mater. Express (1)

Presence-Teleop. Virt. (1)

J. P. Rolland and H. Fuchs, “Optical versus video see-through head-mounted displays in medical visualization,” Presence-Teleop. Virt. 9(12), 287–309 (2000).

Sci. Rep. (1)

J. Bin and W. S. Oates, “A unified material description for light induced deformation in azobenzene polymers,” Sci. Rep. 5(1), 14654 (2015).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

B. Y. Zeldovich and N. V. Tabiryan, “Equilibrium structure of a cholesteric with homeotropic orientation on the walls,” Sov. Phys. JETP 56, 563–566 (1982).

Other (1)

U. Hrozhyk, S. Serak, N. Tabiryan, D. Steeves, L. Hoke, and B. Kimball, “Azobenzene liquid crystals for fast reversible optical switching and enhanced sensitivity for visible wavelengths”, Liquid Crystals XIII, ed. by I.-C. Khoo, Proc. SPIE, 7414, 74140L (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Operation mechanisms of the proposed device: (a) Initial state, (b) after UV exposure, (c) with a voltage, and (d) removing the voltage and red light.
Fig. 2
Fig. 2 Measured absorption anisotropy of Mitsui S428 dye at λ = 633 nm. Red and black dots correspond to the polarization parallel and perpendicular to the LC directors. LC host ZLI-2976.
Fig. 3
Fig. 3 Measured transmission spectra at intial state, post UV exposure, and after red light exposure.
Fig. 4
Fig. 4 Measured transmission spectra of post UV exposure state under different voltages.
Fig. 5
Fig. 5 See-through image behind the dimmer: (a) Initial state, (b) Post UV exposure state, (c) After applying 10V at post UV exposure state (the dark area has no electrode), and (d) After red light irradiation for 15 s at post UV exposure state.
Fig. 6
Fig. 6 Measured transmittance change at λ = 633 nm of our device upon UV exposure (10 mW/cm2).
Fig. 7
Fig. 7 Measured transmittance (at 633 nm) vs. response time at post UV exposure state after applying 10 V for 500 ms.
Fig. 8
Fig. 8 Measured time-dependent transmittance of the LC sample from the post exposure state after HeNe laser beam exposure at intensity = 5.5 mW/cm2.
Fig. 9
Fig. 9 Microscope images of four samples: (a) Initial state (1%-4% S-811), (b) 1% S-811, (c) 3% S-811, and (d) 4% S-811 at post UV exposure state.
Fig. 10
Fig. 10 Measured transmittance at different azobenzene concentrations. λ = 550 nm.
Fig. 11
Fig. 11 Measured transmission spectra at intial state (black line) and post UV exposure state (red line) using a low birefringence LC host, ZLI 1800-100.

Metrics