Abstract

We present an advancement in applications of ultrafast optics in picosecond laser ultrasonics - laser-induced comb-like coherent acoustic phonons are optically controlled in a In0.27Ga0.73As/GaAs multiple quantum well (MQW) structure by a high-speed asynchronous optical sampling (ASOPS) system based on two GHz Yb:KYW lasers. Two successive pulses from the same pump laser are used to excite the MQW structure. The second pump light pulse has a tunable time delay with respect to the first one and can be also tuned in intensity, which enables the amplitude and phase modulation of acoustic phonons. This yields rich temporal acoustic patterns with suppressed or enhanced amplitudes, various wave-packet shapes, varied wave-packet widths, reduced wave-packet periods and varied phase shifts of single-period oscillations within a wave-packet. In the frequency domain, the amplitude and phase shift of the individual comb component present a second-pump-delay-dependent cosine-wave-like and sawtooth-wave-like variation, respectively, with a modulation frequency equal to the comb component frequency itself. The variations of the individual component amplitude and phase shift by tuning the second pump intensity exhibit an amplitude valley and an abrupt phase jump at the ratio around 1:1 of the two pump pulse intensities for certain time delays. A simplified model, where both generation and detection functions are assumed as a cosine stress wave enveloped by Gaussian or rectangular shapes in an infinite periodic MQW structure, is developed in order to interpret acoustic manipulation in the MQW sample. The modelling agrees well with the experiment in a wide range of time delays and intensity ratios. Moreover, by applying a heuristic-analytical approach and nonlinear corrections, the improved calculations reach an excellent agreement with experimental results and thus enable to predict and synthesize coherent acoustic wave patterns in MQW structures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy
Opt. Express 25(8) 9204-9212 (2017)

Two-colour high-speed asynchronous optical sampling based on offset-stabilized Yb:KYW and Ti:sapphire oscillators

N. Krauß, G. Schäfer, J. Flock, O. Kliebisch, C. Li, H. G. Barros, D. C. Heinecke, and T. Dekorsy
Opt. Express 23(14) 18288-18299 (2015)

Wavelength conversion of 1.53-µm-wavelength picosecond pulses in an ion-implanted multiple-quantum-well all-optical switch

E. P. Burr, M. Pantouvaki, A. J. Seeds, R. M. Gwilliam, S. M. Pinches, and C. C. Button
Opt. Lett. 28(6) 483-485 (2003)

References

  • View by:
  • |
  • |
  • |

  1. T. Dekorsy, G. C. Cho, and H. Kurz, Light scattering in solids VIII (Springer-Verlag, 2000), Chap. 4.
  2. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).
  3. Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
    [Crossref]
  4. R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
    [Crossref]
  5. M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
    [Crossref]
  6. K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
    [Crossref]
  7. D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express 18(7), 6767–6778 (2010).
    [Crossref] [PubMed]
  8. G. Garrett, J. Whitaker, A. Sood, and R. Merlin, “Ultrafast optical excitation of a combined coherent-squeezed phonon field in SrTiO3,” Opt. Express 1(12), 385–389 (1997).
    [Crossref] [PubMed]
  9. J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
    [Crossref]
  10. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
    [Crossref] [PubMed]
  11. W. Zhu, C. Wang, M. Sun, S. Li, J. Zhai, and T. Lai, “Characterization of Femtosecond laser-irradiation crystallization and structure of multiple periodic Si/Sb80Te20 nanocomposite films by coherent phonon spectroscopy,” Opt. Express 19(23), 22684–22691 (2011).
    [Crossref] [PubMed]
  12. K. Makino, J. Tominaga, and M. Hase, “Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials,” Opt. Express 19(2), 1260–1270 (2011).
    [Crossref] [PubMed]
  13. L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
    [Crossref]
  14. T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
    [Crossref]
  15. A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6(2), 213–232 (2019).
    [Crossref]
  16. P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
    [Crossref]
  17. N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
    [Crossref] [PubMed]
  18. M. Cardona and G. Güntherodt, Light scattering in solids V (Springer-Verlag, 1989).
  19. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
    [Crossref]
  20. K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
    [Crossref] [PubMed]
  21. J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
    [Crossref]
  22. K. Seeger, Semiconductor physics, (Springer, 2004), Chapter 11.
  23. C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
    [Crossref]
  24. A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
    [Crossref]
  25. O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
    [Crossref]
  26. W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
    [Crossref]
  27. A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
    [Crossref]
  28. D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
    [Crossref]
  29. U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
    [Crossref] [PubMed]
  30. G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
    [Crossref]
  31. S.-J. Yu and M. Ouyang, “Coherent discriminatory modal manipulation of acoustic phonons at the nanoscale,” Nano Lett. 18(2), 1124–1129 (2018).
    [Crossref] [PubMed]
  32. K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).
  33. D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
    [Crossref]
  34. C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
    [Crossref]
  35. X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
    [Crossref] [PubMed]
  36. C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
    [Crossref]
  37. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  38. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  39. C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
    [Crossref] [PubMed]
  40. C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
    [Crossref]
  41. M. E. Levinshtein and M. Shur, “Gallium Arsenide (GaAs),” in Handbook Series on Semiconductor Parameters: Vol. 1, M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, eds. (World Scientific, 1996).
  42. P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
    [Crossref] [PubMed]
  43. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  44. D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008).
    [Crossref] [PubMed]
  45. M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
    [Crossref]

2019 (3)

A. H. Safavi-Naeini, D. V. Thourhout, R. Baets, and R. V. Laer, “Controlling phonons and photons at the wavelength scale: integrated photonics meets integrated phononics,” Optica 6(2), 213–232 (2019).
[Crossref]

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

2018 (5)

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

S.-J. Yu and M. Ouyang, “Coherent discriminatory modal manipulation of acoustic phonons at the nanoscale,” Nano Lett. 18(2), 1124–1129 (2018).
[Crossref] [PubMed]

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

2017 (2)

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
[Crossref] [PubMed]

2015 (3)

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref] [PubMed]

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref] [PubMed]

2014 (2)

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

2013 (2)

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

2012 (2)

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

2011 (3)

2010 (1)

2008 (2)

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

D. J. H. C. Maas, B. Rudin, A.-R. Bellancourt, D. Iwaniuk, S. V. Marchese, T. Südmeyer, and U. Keller, “High precision optical characterization of semiconductor saturable absorber mirrors,” Opt. Express 16(10), 7571–7579 (2008).
[Crossref] [PubMed]

2007 (2)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

2005 (2)

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

2003 (2)

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2002 (1)

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

2001 (3)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
[Crossref] [PubMed]

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

1999 (1)

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

1998 (1)

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

1997 (3)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

G. Garrett, J. Whitaker, A. Sood, and R. Merlin, “Ultrafast optical excitation of a combined coherent-squeezed phonon field in SrTiO3,” Opt. Express 1(12), 385–389 (1997).
[Crossref] [PubMed]

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Abare, A.

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

Akimov, A. V.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Babilotte, P.

Baets, R.

Bartels, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

Bauer, M.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Baumberg, J. J.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Beck, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Bellancourt, A.-R.

Beton, P. H.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Beyer, A.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Bossini, D.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Bovensiepen, U.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Breteau, J.-M.

Bruchhausen, A.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Bruchhausen, A. E.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Cantaluppi, A.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Cartella, A.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Cavalleri, A.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chen, F.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Chen, H.-R.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Chen, J.-S.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Cheng, H.-M.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Chern, G.-W.

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

Chou, L.-C.

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

Chyi, J.-I.

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

Colpitts, T.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

Cortés, R.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Dekorsy, T.

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
[Crossref] [PubMed]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

Denbaars, S. P.

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

Dimakis, E.

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

Ebner, L.

Eremin, I.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Everitt, H. O.

U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
[Crossref] [PubMed]

Fainstein, A.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref] [PubMed]

Faist, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Feng, D. L.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Fink, J.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Fischer, M.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Flock, J.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

Först, M.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Fukui, T.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Gallo, P.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Garrett, G.

Gebs, R.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Gotoh, H.

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

Greener, J. D. G.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Grossmann, M.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Gusev, V.

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

D. Mounier, P. Picart, P. Babilotte, P. Ruello, J.-M. Breteau, T. Pézeril, G. Vaudel, M. Kouyaté, and V. Gusev, “Jones matrix formalism for the theory of picosecond shear acoustic pulse detection,” Opt. Express 18(7), 6767–6778 (2010).
[Crossref] [PubMed]

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

Gusev, V. E.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref] [PubMed]

Hanff, K.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Hase, M.

He, C.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Heinecke, D. C.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

Hettich, M.

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
[Crossref] [PubMed]

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Hitachi, K.

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

Höfer, U.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Hsieh, C.-L.

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

Hsieh, W.-F.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Hsu, C.-H.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Huang, Y.-K.

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Hurley, D. H.

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

Ishioka, K.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Ishizawa, A.

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

Iwaniuk, D.

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jeong, H.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Jho, Y. D.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Jusserand, B.

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref] [PubMed]

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Kamble, B.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Kapon, E.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Kapteyn, H. C.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Keller, U.

Kent, A. J.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Kim, C. S.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Kim, D. S.

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Kim, J. H.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Kim, S. H.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Kim, Y. J.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Kimel, A. V.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Kipp, L.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Kliebisch, O.

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
[Crossref] [PubMed]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

Klingele, M.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Köhler, K.

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

Kouyaté, M.

Kovalyuk, Z. D.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Krauß, N.

Kudrynskyi, Z. R.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Kurz, H.

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

Kwon, H. K.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Laer, R. V.

Lai, T.

Lanzillotti-Kimura, N. D.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref] [PubMed]

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Lee, C.-W.

U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
[Crossref] [PubMed]

Lee, D.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Lee, H. S.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Lemaître, A.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Lewis, R.

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

Li, C.

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

C. Li, N. Krauß, G. Schäfer, L. Ebner, O. Kliebisch, J. Schmidt, S. Winnerl, M. Hettich, and T. Dekorsy, “High-speed asynchronous optical sampling based on GHz Yb:KYW oscillators,” Opt. Express 25(8), 9204–9212 (2017).
[Crossref] [PubMed]

Li, S.

Li, S.-J.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Liang, J.-C.

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

Lin, H.-H.

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

Lin, J.-H.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Lin, K.-H.

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

Liu, W.-R.

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Lloyd-Hughes, J.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Lu, T.-M.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Lu, Z.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Maas, D. J. H. C.

Makino, K.

Marchese, S. V.

Matsuda, O.

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Merlin, R.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

G. Garrett, J. Whitaker, A. Sood, and R. Merlin, “Ultrafast optical excitation of a combined coherent-squeezed phonon field in SrTiO3,” Opt. Express 1(12), 385–389 (1997).
[Crossref] [PubMed]

Mikhaylovskiy, R. V.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Mounier, D.

Murnane, M. M.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Nishikawa, T.

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

Nova, T. F.

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

O’Brien, K.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

O’Quinn, B.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

Oh, E.

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Ohno, Y.

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Ouyang, M.

S.-J. Yu and M. Ouyang, “Coherent discriminatory modal manipulation of acoustic phonons at the nanoscale,” Nano Lett. 18(2), 1124–1129 (2018).
[Crossref] [PubMed]

Ozgür, U.

U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
[Crossref] [PubMed]

Pan, C.-C.

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

Park, J. S.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Patanè, A.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Petek, H.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Pézeril, T.

Picart, P.

Popmintchev, T.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rettig, L.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rho, J.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Ristow, O.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Rohde, G.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rohwer, T.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rossnagel, K.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rudin, B.

Rudra, A.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Ruello, P.

Rüfenacht, M.

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Safavi-Naeini, A. H.

Sakaki, H.

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Sanders, G. D.

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Scalari, G.

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

Schäfer, G.

Scheel, P.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Scheer, E.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Schmidt, J.

Schubert, M.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Sesin, P.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Shen, X.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Siivola, E.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

Sohrt, C.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Someya, M.

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

Song, K.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

Sood, A.

Soubelet, P.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Stange, A.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Stanton, C. J.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Stolz, W.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Suchowski, H.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Südmeyer, T.

Sun, C.-K.

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

Sun, M.

Tachizaki, T.

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Taniguchi, T.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Thourhout, D. V.

Timalsina, Y. P.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Tominaga, J.

Tsujino, S.

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Vaudel, G.

Venkatasubramanian, R.

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

Villafañe, V.

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

Volz, K.

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Waitz, R.

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

Wang, C.

Washington, M.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Watanabe, K.

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Wen, Y.-C.

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

Whitaker, J.

Winnerl, S.

Wolf, T.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Woo, J. C.

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Wright, O. B.

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Yahng, J. S.

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Yamaguchi, M.

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Yang, L. X.

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Yee, K. J.

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

Yin, X.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Yu, C.-T.

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

Yu, S.-J.

S.-J. Yu and M. Ouyang, “Coherent discriminatory modal manipulation of acoustic phonons at the nanoscale,” Nano Lett. 18(2), 1124–1129 (2018).
[Crossref] [PubMed]

Zhai, J.

Zhang, X.

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Zhu, W.

Appl. Phys. Lett. (9)

Y.-C. Wen, L.-C. Chou, H.-H. Lin, V. Gusev, K.-H. Lin, and C.-K. Sun, “Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects,” Appl. Phys. Lett. 90(17), 172102 (2007).
[Crossref]

K. Hitachi, M. Someya, A. Ishizawa, T. Nishikawa, and H. Gotoh, “Characterization of longitudinal acoustic phonons in InGaAsP multiple quantum wells by asynchronous optical sampling,” Appl. Phys. Lett. 113(20), 201102 (2018).
[Crossref]

J. S. Yahng, Y. D. Jho, K. J. Yee, E. Oh, J. C. Woo, D. S. Kim, G. D. Sanders, and C. J. Stanton, “Probing strained InGaN/GaN nanostructures with ultrashort acoustic phonon wave packets generated by femtosecond lasers,” Appl. Phys. Lett. 80(25), 4723–4725 (2002).
[Crossref]

C. S. Kim, J. H. Kim, H. Jeong, Y. D. Jho, H. K. Kwon, H. S. Lee, J. S. Park, K. Song, S. H. Kim, Y. J. Kim, D. Lee, and K. J. Yee, “Control of coherent acoustic phonon generation with external bias in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 100(10), 101105 (2012).
[Crossref]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent control of acoustic phonons in semiconductor superlattices,” Appl. Phys. Lett. 72(22), 2844–2846 (1998).
[Crossref]

D. H. Hurley, R. Lewis, O. B. Wright, and O. Matsuda, “Coherent control of gigahertz surface acoustic and bulk phonons using ultrafast optical pulses,” Appl. Phys. Lett. 93(11), 113101 (2008).
[Crossref]

C.-T. Yu, K.-H. Lin, C.-L. Hsieh, C.-C. Pan, J.-I. Chyi, and C.-K. Sun, “Generation of frequency-tunable nanoacoustic waves by optical coherent control,” Appl. Phys. Lett. 87(9), 093114 (2005).
[Crossref]

C.-K. Sun, Y.-K. Huang, J.-C. Liang, A. Abare, and S. P. Denbaars, “Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 78(9), 1201–1203 (2001).
[Crossref]

M. Rüfenacht, S. Tsujino, Y. Ohno, and H. Sakaki, “Delayed luminescence induced by intersubband optical excitation in a charge transfer double quantum well structure,” Appl. Phys. Lett. 70(9), 1128–1130 (1997).
[Crossref]

Appl. Sci. (Basel) (1)

C. Li, V. Gusev, E. Dimakis, T. Dekorsy, and M. Hettich, “Broadband photo-excited coherent acoustic frequency combs and mini-Brillouin-zone modes in a MQW-SESAM structure,” Appl. Sci. (Basel) 9(2), 289 (2019).
[Crossref]

J. Appl. Phys. (1)

A. Bruchhausen, J. Lloyd-Hughes, M. Hettich, R. Gebs, M. Grossmann, O. Ristow, A. Bartels, M. Fischer, M. Beck, G. Scalari, J. Faist, A. Rudra, P. Gallo, E. Kapon, and T. Dekorsy, “Investigation of coherent acoustic phonons in terahertz quantum cascade laser structures using femtosecond pump-probe spectroscopy,” J. Appl. Phys. 112(3), 033517 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

K. Ishioka, A. Beyer, W. Stolz, K. Volz, H. Petek, U. Höfer, and C. J. Stanton, “Coherent optical and acoustic phonons generated at lattice-matched GaP/Si(0 0 1) heterointerfaces,” J. Phys. Condens. Matter 31(9), 094003 (2019).
[Crossref] [PubMed]

Nano Lett. (1)

S.-J. Yu and M. Ouyang, “Coherent discriminatory modal manipulation of acoustic phonons at the nanoscale,” Nano Lett. 18(2), 1124–1129 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

K. O’Brien, N. D. Lanzillotti-Kimura, J. Rho, H. Suchowski, X. Yin, and X. Zhang, “Ultrafast acousto-plasmonic control and sensing in compex nanostructures,” Nat. Commun. 5, 5042 (2014).

Nat. Phys. (1)

T. F. Nova, A. Cartella, A. Cantaluppi, M. Först, D. Bossini, R. V. Mikhaylovskiy, A. V. Kimel, R. Merlin, and A. Cavalleri, “An effective magnetic field from optically driven phonons,” Nat. Phys. 13(2), 132–136 (2017).
[Crossref]

Nature (2)

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597–602 (2001).
[Crossref] [PubMed]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (6)

Optica (1)

Phys. Rev. B (1)

J. D. G. Greener, A. V. Akimov, V. E. Gusev, Z. R. Kudrynskyi, P. H. Beton, Z. D. Kovalyuk, T. Taniguchi, K. Watanabe, A. J. Kent, and A. Patanè, “Coherent acoustic phonons in van der Waals nanolayers and heterostructures,” Phys. Rev. B 98(7), 075408 (2018).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (5)

P. Sesin, P. Soubelet, V. Villafañe, A. E. Bruchhausen, B. Jusserand, A. Lemaître, N. D. Lanzillotti-Kimura, and A. Fainstein, “Dynamical optical tuning of the coherent phonon detection sensitivity in DBR-based GaAs optomechanical resonators,” Phys. Rev. B Condens. Matter Mater. Phys. 92(7), 075307 (2015).
[Crossref]

M. Grossmann, M. Klingele, P. Scheel, O. Ristow, M. Hettich, C. He, R. Waitz, M. Schubert, A. Bruchhausen, V. Gusev, E. Scheer, and T. Dekorsy, “Femtosecond spectroscopy of acoustic frequency combs in the 100-GHz frequency range in Al/Si membranes,” Phys. Rev. B Condens. Matter Mater. Phys. 88(20), 205202 (2013).
[Crossref]

G.-W. Chern, K.-H. Lin, Y.-K. Huang, and C.-K. Sun, “Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells,” Phys. Rev. B Condens. Matter Mater. Phys. 67(12), 121303 (2003).
[Crossref]

D. C. Heinecke, O. Kliebisch, J. Flock, A. Bruchhausen, K. Köhler, and T. Dekorsy, “Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice,” Phys. Rev. B Condens. Matter Mater. Phys. 87(7), 075307 (2013).
[Crossref]

O. Matsuda, T. Tachizaki, T. Fukui, J. J. Baumberg, and O. B. Wright, “Acoustic phonon generation and detection in GaAs/Al0.3Ga0.7As quantum wells with picosecond laser pulses,” Phys. Rev. B Condens. Matter Mater. Phys. 71(11), 115330 (2005).
[Crossref]

Phys. Rev. Lett. (3)

U. Ozgür, C.-W. Lee, and H. O. Everitt, “Control of coherent acoustic phonons in semiconductor quantum wells,” Phys. Rev. Lett. 86(24), 5604–5607 (2001).
[Crossref] [PubMed]

A. Bartels, T. Dekorsy, H. Kurz, and K. Köhler, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattice: excitation and detection,” Phys. Rev. Lett. 82(5), 1044–1047 (1999).
[Crossref]

L. X. Yang, G. Rohde, T. Rohwer, A. Stange, K. Hanff, C. Sohrt, L. Rettig, R. Cortés, F. Chen, D. L. Feng, T. Wolf, B. Kamble, I. Eremin, T. Popmintchev, M. M. Murnane, H. C. Kapteyn, L. Kipp, J. Fink, M. Bauer, U. Bovensiepen, and K. Rossnagel, “Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons,” Phys. Rev. Lett. 112(20), 207001 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

RSC Advances (1)

W.-R. Liu, J.-H. Lin, J.-S. Chen, H.-M. Cheng, S.-J. Li, H.-R. Chen, C.-H. Hsu, and W.-F. Hsieh, “Saturation and beating of acoustic phonon oscillations excited near the exciton resonance of strained polar ZnO/Zn0.8Mg0.2O multiple quantum wells,” RSC Advances 8(15), 7980–7987 (2018).
[Crossref]

Sci. Rep. (1)

X. Shen, Z. Lu, Y. P. Timalsina, T.-M. Lu, M. Washington, and M. Yamaguchi, “Coherent phonon transport measurement and controlled acoustic excitations using tunable acoustic phonon source in GHz-sub THz Range with variable bandwidth,” Sci. Rep. 8(1), 7054 (2018).
[Crossref] [PubMed]

Solid State Commun. (1)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2–3), 207–220 (1997).
[Crossref]

Ultrasonics (2)

N. D. Lanzillotti-Kimura, A. Fainstein, and B. Jusserand, “Towards GHz-THz cavity optomechanics in DBR-based semiconductor resonators,” Ultrasonics 56, 80–89 (2015).
[Crossref] [PubMed]

P. Ruello and V. E. Gusev, “Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action,” Ultrasonics 56, 21–35 (2015).
[Crossref] [PubMed]

Other (5)

M. Cardona and G. Güntherodt, Light scattering in solids V (Springer-Verlag, 1989).

K. Seeger, Semiconductor physics, (Springer, 2004), Chapter 11.

T. Dekorsy, G. C. Cho, and H. Kurz, Light scattering in solids VIII (Springer-Verlag, 2000), Chap. 4.

V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP, 1993).

M. E. Levinshtein and M. Shur, “Gallium Arsenide (GaAs),” in Handbook Series on Semiconductor Parameters: Vol. 1, M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, eds. (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) The block diagram of ASOPS system. (b) The double-pump-pulse configuration in the measurement box. NDF: neutral density filter. NDF is used to adjust the delayed second pump power in the range of 0 – 37 mW. (c) The supplementary double-pulse-pump configuration in the measurement box. HWP: half wave plate. HWP is used to adjust the delayed second pump power in the range of 37 – 69 mW. (d) The sample structure. The multilayered sample is composed of GaAs layers (coral pink areas), In0.27Ga0.73As layers (QW, blue areas) and a DBR.
Fig. 2
Fig. 2 Illustration of the stress wave initiated in a triple-QW stack (solid curves) and detected periodically (dotted lines) in an infinite MQW structure. The profile of a triple-QW stack is assumed as (a) Gaussian shape and (b) rectangular shape.
Fig. 3
Fig. 3 (a) Original time traces, (b) coherent acoustic phonons, (c) acoustic amplitude spectrums, and (d) acoustic phase spectrums when the second pump time delay ∆T varies in the range of 0 – 5.6τ (0.5T). The first pump power P1 equals the second pump power P2 of 27 mW. Curves with ∆T-dependent color represent experimental results and gray curves represent modelling results given Gaussian generation and detection functions in individual triple-QW stack. Vertical dot black lines in (d) indicate the positions of five comb frequencies. Data are shifted vertically for clarity in steps of 2.5 × 10−3 in (a), 1.5 × 10−6 in (b), 1 in (c) and 2π in (d).
Fig. 4
Fig. 4 (a) The amplitude of five main frequency comb components at 297.8 GHz, 330.5 GHz, 363.2 GHz), 396.4 GHz and 428.2 GHz as a function of the second pump time-delay from 0 to 5.6τ. Solid lines denote the absolute cosine fit for experimental results by y(t) = |cos(πft)|. (b) The relation between the modulation frequencies from (a) and the corresponding comb component frequencies.
Fig. 5
Fig. 5 (a) The phase shift of five main frequency comb components at 297.8 GHz, 330.5 GHz, 363.2 GHz, 396.4 GHz and 428.2 GHz as a function of the second pump delay from 0 to 5.6τ. (b) The relation between the phase modulation frequencies from (a) and the corresponding comb component frequencies.
Fig. 6
Fig. 6 The acoustic calculation based on the assumption of a Gaussian generation and detection profile of the triple-QW stack. The pump power ratio is fixed at q = 1 and the second pump pulse delay ∆T is adjustable in the range of 0 – 5.6τ . (a) The comb frequency component amplitude dependences on the second pump pulse delay. (b) The comb frequency component phase dependences on the second pump pulse delay. (c) The corresponding variation of coherent acoustic phonons as a function of the second pump pulse delay.
Fig. 7
Fig. 7 Comparison of experimental, Gaussian and rectangular modelling results. The pump power ratio q = P2/P1 varies from 3/27 to 67/27 and the second pump delay is fixed at 0.5τ. The first pump power is fixed at 27 mW in experiments. (a) Original time traces. (b) Coherent acoustic phonons. (c) Acoustic amplitude spectrums. (d) Acoustic phase spectrums. Curves with q-dependent color represent experimental results. Gray curves in (b) and (c) represent Gaussian modelling results. Sky blue curves in (b) and (c) represent rectangular modelling results. Black solid curves in (d) represent modelling results. Vertical dot black lines in (d) indicate the position of five comb components. Data are shifted vertically for clarity in steps of 2.5 × 10−3 in (a), 1.0 × 10−6 in (b), 1 in (c) and 4π in (d).
Fig. 8
Fig. 8 (a) The experimental comb component amplitude dependences on the pump power when only the second pump beam is incident on sample (filled symbols). The pump power varies from 3 mW to 67 mW. The amplitude curves of five comb components are individually fit linearly from 30 mW and exponentially from the beginning. Solid lines represent the linear fit and dot lines represent the nonlinear fit. The nonlinear factor k0 (f, q) is the ratio between the nonlinear fit and the linear fit. (b) Nonlinear factor curves k0(f, q) for five comb components in the range of pump power ratio q = P2/P1 from 3/27 to 67/27.
Fig. 9
Fig. 9 Comparison of experimental and heuristic-analytical results after nonlinear corrections in the range of q from 3/27 to 67/27 at ∆T = 0.5τ. (a) Time domain coherent acoustic phonons and (b) corresponding acoustic spectrum series. Curves with q-dependent color represent experimental results and gray lines represent the results after nonlinear corrections. Data are shifted vertically for clarity in steps of 1.0 × 10−6 in (a) and 1 in (b).
Fig. 10
Fig. 10 (a) The comb component amplitude dependences on the pump power ratio q = P2/P1 at ∆T = 0.5τ. Filled symbols connected by solid lines represent experimental results. Open symbols connected by solid lines represent heuristic-analytical results after nonlinear corrections. Cross symbols connected by solid lines represent rectangular modelling results after nonlinear corrections. Dot lines represent Gaussian modelling results after nonlinear corrections. (b) The comb component phase dependences on the pump power ratio q = P2/P1 at ∆T = 0.5τ. Filled symbols represent experimental data and dot curves represent calculation data. Gray straight lines are only for marking purpose.
Fig. 11
Fig. 11 The original time traces (left), coherent acoustic phonons (middle) and FFT spectrum series (right) when the second and the first pump power ratio varies from 3/27 to 67/27. (a) ∆T is fixed at 2.8τ. (b) ∆T is fixed at 3.0τ. (c) ∆T is fixed at 3.2τ. Curves with q-dependent color represent experimental results and gray curves represent heuristic-analytical results after nonlinear corrections. Data are shifted vertically for clarity.
Fig. 12
Fig. 12 The first wave-packet of acoustic phonons when the pump power ratio varies from 3/27 to 67/27 (the data are the same as those in Figs. 11(a)-11(c), but smaller steps are used for the vertical shift). The second pump delay is (a) ∆T = 2.8τ, (b) ∆T = 3.0τ, (c) ∆T = 3.2τ. Vertical dot gray lines indicate the peak positions in the case of ∆T = 3.0τ at the pump ratio q = 3/27 (red). The colored curves from red to magenta represent experimental data from q = 3/27 to 67/27 (same as those curves in Figs. 11 (a)-11(c)). The gray curves represent heuristic-analytical results after nonlinear corrections.
Fig. 13
Fig. 13 Frequency comb component amplitude and phase dependences on the pump power ratio q. (a) The second pump delay is fixed at 2.8τ. Top: comb component amplitude dependences on q. Middle: comb component phase shift dependences on q. Filled symbols denote experimental data, while solid lines denote heuristic-analytical results. The numbers 1, 2, 3, 4, 5 are used to address five comb components defined in Section 4.1. Bottom: spectral phase in the q range from 3/27 to 67/27 in steps of 4/27. Curves with q-dependent color represent experimental results and solid black curves represent heuristic-analytical results after nonlinear corrections. Vertical dot black lines indicate the position of five comb components. Phase spectrums are vertically shifted for clarity in steps of 4π. (b) The second pump delay is fixed at 3.0τ. (c) The second pump delay is fixed at 3.2τ.
Fig. 14
Fig. 14 (a) Original time traces, (b) coherent acoustic phonons, (c) acoustic amplitude spectrum and (d) acoustic phase spectrum when the second pump delay is fixed at 5.6τ (0.5T) and the pump power ratio varies from 3/27 to 67/27. The first pump power is fixed at 27 mW in experiments. Curves with q-dependent color represent experimental results. Gray (black) curves represent heuristic-analytical results after nonlinear corrections. Vertical dot lines in (d) indicate the position of five comb components. Data are vertically shifted for clarity in steps of 2.5 × 10−3 in (a), 1.8 × 10−6 in (b), 1 in (c), and 4π in (d).
Fig. 15
Fig. 15 (a) Comb component amplitude and (b) comb component phase shift dependences on pump power ratio q, when the second pump delay is fixed at 5.6τ (0.5T). Filled symbols denote experimental data, while solid lines denote heuristic-analytical results. The numbers 1, 2, 3, 4, 5 are used to address five comb components defined in Section 4.1.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f g ( z,t )=aexp[ ( zvt ) 2 2 σ 2 ]cos[ 2π d QW ( zvt ) ],
σ= d s 2 2ln2 ,
f d ( z )=bexp( z 2 2 σ 2 )cos( 2π d QW z ),
s 1 ( t )= f d ( z ) f g ( z )= f d ( z ) f g ( z,t )dz .
s 1 ( t )= abexp[ z 2 2 σ 2 ( zvt ) 2 2 σ 2 ]cos[ 2π d QW ( zvt ) ]cos( 2π d QW z )dz = 1 2 abexp[ ( vt 2σ ) 2 ][ c 1 + c 2 cos( 2π d QW vt ) ] c 3 exp[ ( vt 2σ ) 2 ]cos( 2π d QW vt ).
S 1 ( f )= s 1 ( t )exp( i2πft )dt = c 4 ( exp{ [ f f 0 v/( 2πσ ) ] 2 }+exp{ [ f+ f 0 v/( 2πσ ) ] 2 } ),
s 1_total ( t )= c 5 n= s 1 ( t n d ss v )h( t ) = c 5 n= s 1 ( t n d ss v )exp[ 1 2 ( 2 2ln2 Δt ) 2 t 2 ] ,
S 1_total ( f )= c 5 n= s 1 ( t n d ss v )h( t )exp( i2πft )dt = c 6 m= S 1 ( f )H( fmΔf ) ,
S 1_total ( f )= c 7 m= ( exp{ [ f f 0 v/( 2πσ ) ] 2 }+exp{ [ f+ f 0 v/( 2πσ ) ] 2 } )exp{ [ fmΔf 2 2ln2 /( πΔt ) ] 2 } ,
S 1R_total ( f )= c 8 m= ( 1 ( f f 0 ) 2 { sin 2 [ f f 0 v/(π d s ) ] }+ 1 ( f+ f 0 ) 2 { sin 2 [ f+ f 0 v/(π d s ) ] } )exp{ [ fmΔf 2 2ln2 /( πΔt ) ] 2 } ,
A 2 A 1 = P 2 P 1 =q,
s 2_total ( t )= s 1_total ( t )+q s 1_total ( tΔT ).
S 2_total ( f )= S 1_total ( f )+q S 1_total ( f )exp( i2πfΔT ) =| S 2_total ( f ) |exp[ iθ( f ) ].
| S 2_total ( f ) |=| S 1_total ( f ) | ( 1q ) 2 +4q cos 2 ( πfΔT )
θ( f )= tan 1 [ qsin( 2πfΔT ) 1+qcos( 2πfΔT ) ],
k 0 ( f,q )= A 1 ( f )exp[ 27(1+q)/ t 1 ( f ) ]+  A 0 ( f ) a 0 ( f ) + 27 b 0 ( f )( 1 + q ) ,

Metrics