Abstract

Spoof surface plasmon (SSP) meta-couplers that efficiently integrate other diversified functionalities into a single ultrathin device are highly desirable in the modern microwave and terahertz fields. However, the diversified functionalities, to the best of our knowledge, have not been applied to circular polarization meta-couplers because of the spin coupling between the orthogonal incident waves. In this paper, we propose and demonstrate a terahertz spin-decoupled bifunctional meta-coupler for SSP excitation and beam steering. The designed meta-coupler is composed of a coupling metasurface and a propagating metasurface. The former aims at realizing anomalous reflection or converting the incident waves into SSP under the illumination of the right or left circular polarization waves, respectively, and the latter are used to guide out the excited SSP. The respective converting efficiency can reach 82% and 70% at 0.3THz for the right and left circular polarization incident waves. Besides, by appropriately adjusting the reflection phase distribution, many other functionalities can also be integrated into the meta-coupler. Our study may open up new routes for polarization-related SSP couplers, detectors, and other practical terahertz devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz dual phase gradient metasurfaces: high-efficiency binary-channel spoof surface plasmon excitation

Li-Zheng Yin, Tie-Jun Huang, Di Wang, Jiang-Yu Liu, Yan Sun, and Pu-Kun Liu
Opt. Lett. 45(2) 411-414 (2020)

Photonic spin Hall effect based on broadband high-efficiency reflective metasurfaces

Zhanyi Zhang, Haigang Liang, Tao He, Zhanshan Wang, and Xinbin Cheng
Appl. Opt. 59(5) A63-A68 (2020)

Polarization-independent broadband meta-surface for bifunctional antenna

Tong Cai, Guang-Ming Wang, He-Xiu Xu, Shi-Wei Tang, and Jian-Gang Liang
Opt. Express 24(20) 22606-22615 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
    [Crossref]
  2. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
    [Crossref] [PubMed]
  3. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
    [Crossref] [PubMed]
  4. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
    [Crossref] [PubMed]
  5. F. Y. Han, T. J. Huang, L. Z. Yin, J. Y. Liu, and P. K. Liu, “Superfocusing plate of terahertz waves based on a gradient refractive index metasurface,” J. Appl. Phys. 124(20), 204902 (2018).
    [Crossref]
  6. J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
    [Crossref]
  7. A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
    [Crossref]
  8. V. Popov, F. Boust, and S. N. Burokur, “Controlling diffraction patterns with metagratings,” Phys. Rev. Appl. 10(1), 011002 (2018).
    [Crossref]
  9. L. Z. Yin, T. J. Huang, F. Y. Han, J. Y. Liu, and P. K. Liu, “Terahertz multichannel metasurfaces with sparse unit cells,” Opt. Lett. 44(7), 1556–1559 (2019).
    [Crossref] [PubMed]
  10. V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
    [Crossref]
  11. Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
    [Crossref]
  12. F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
    [Crossref] [PubMed]
  13. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
    [Crossref] [PubMed]
  14. Q. Chen and H. Zhang, “Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna,” IEEE Access 6, 74772–74777 (2018).
    [Crossref]
  15. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  16. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
    [Crossref] [PubMed]
  17. L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
    [Crossref]
  18. X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
    [Crossref]
  19. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
    [Crossref] [PubMed]
  20. K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
    [Crossref]
  21. F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
    [Crossref]
  22. A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Plasmonic metagratings for simultaneous determination of Stokes parameters,” Optica 2(8), 716–723 (2015).
    [Crossref]
  23. J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
    [Crossref]
  24. S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
    [Crossref] [PubMed]
  25. W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
    [Crossref] [PubMed]
  26. Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
    [Crossref]
  27. J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
    [Crossref]
  28. C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
    [Crossref]
  29. J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
    [Crossref] [PubMed]
  30. Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
    [Crossref]
  31. S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
    [Crossref] [PubMed]
  32. F. Ding and S. I. Bozhevolnyi, “A review of unidirectional surface plasmon polariton metacouplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
    [Crossref]
  33. T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
    [Crossref]
  34. F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
    [Crossref] [PubMed]
  35. Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
    [Crossref] [PubMed]
  36. X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
    [Crossref] [PubMed]
  37. W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
    [Crossref]
  38. Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photon. Res. 7(1), 80–88 (2019).
    [Crossref]
  39. H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
    [Crossref]
  40. J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
    [Crossref] [PubMed]
  41. K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).
  42. T. J. Huang, J. Y. Liu, L. Z. Yin, F. Y. Han, and P. K. Liu, “Superfocusing of terahertz wave through spoof surface plasmons,” Opt. Express 26(18), 22722–22732 (2018).
    [Crossref] [PubMed]
  43. Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
    [Crossref] [PubMed]
  44. H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
    [Crossref] [PubMed]

2019 (5)

L. Z. Yin, T. J. Huang, F. Y. Han, J. Y. Liu, and P. K. Liu, “Terahertz multichannel metasurfaces with sparse unit cells,” Opt. Lett. 44(7), 1556–1559 (2019).
[Crossref] [PubMed]

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

F. Ding and S. I. Bozhevolnyi, “A review of unidirectional surface plasmon polariton metacouplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

Y. Yuan, K. Zhang, X. Ding, B. Ratni, S. N. Burokur, and Q. Wu, “Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region,” Photon. Res. 7(1), 80–88 (2019).
[Crossref]

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

2018 (12)

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref] [PubMed]

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
[Crossref]

V. Popov, F. Boust, and S. N. Burokur, “Controlling diffraction patterns with metagratings,” Phys. Rev. Appl. 10(1), 011002 (2018).
[Crossref]

Q. Chen and H. Zhang, “Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna,” IEEE Access 6, 74772–74777 (2018).
[Crossref]

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

F. Y. Han, T. J. Huang, L. Z. Yin, J. Y. Liu, and P. K. Liu, “Superfocusing plate of terahertz waves based on a gradient refractive index metasurface,” J. Appl. Phys. 124(20), 204902 (2018).
[Crossref]

T. J. Huang, J. Y. Liu, L. Z. Yin, F. Y. Han, and P. K. Liu, “Superfocusing of terahertz wave through spoof surface plasmons,” Opt. Express 26(18), 22722–22732 (2018).
[Crossref] [PubMed]

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

2017 (7)

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref] [PubMed]

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

2016 (3)

J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
[Crossref]

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

2015 (7)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Plasmonic metagratings for simultaneous determination of Stokes parameters,” Optica 2(8), 716–723 (2015).
[Crossref]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
[Crossref] [PubMed]

2013 (6)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

2012 (3)

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Albooyeh, M.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Asadchy, V. S.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bai, B. F.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Balthasar Mueller, J. P.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Boust, F.

V. Popov, F. Boust, and S. N. Burokur, “Controlling diffraction patterns with metagratings,” Phys. Rev. Appl. 10(1), 011002 (2018).
[Crossref]

Bozhevolnyi, S. I.

F. Ding and S. I. Bozhevolnyi, “A review of unidirectional surface plasmon polariton metacouplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref] [PubMed]

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

Z. Han, Y. Zhang, and S. I. Bozhevolnyi, “Spoof surface plasmon-based stripe antennas with extreme field enhancement in the terahertz regime,” Opt. Lett. 40(11), 2533–2536 (2015).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Plasmonic metagratings for simultaneous determination of Stokes parameters,” Optica 2(8), 716–723 (2015).
[Crossref]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
[Crossref] [PubMed]

Burokur, S. N.

Cai, B.

Cai, T.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Capasso, F.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

J. B. Mueller, K. Leosson, and F. Capasso, “Ultracompact metasurface in-line polarimeter,” Optica 3(1), 42–47 (2016).
[Crossref]

Chan, K.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Cheah, K. W.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, H. Y.

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Chen, M.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, Q.

Q. Chen and H. Zhang, “Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna,” IEEE Access 6, 74772–74777 (2018).
[Crossref]

Chen, S.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, S. M.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, W. T.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Chen, X.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Chen, X. Z.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Chen, Y.

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

Cheng, Y.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

Chi Zhang, H.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Christian, P.

A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
[Crossref]

Chu, H.

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

Cui, T. J.

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deshpande, R.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref] [PubMed]

Devlin, R. C.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Díaz-Rubio, A.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Ding, F.

F. Ding and S. I. Bozhevolnyi, “A review of unidirectional surface plasmon polariton metacouplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref] [PubMed]

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Ding, X.

Dong, S.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Dong Bai, G.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Duan, J.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Eleftheriades, G. V.

A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
[Crossref]

Elsakka, A.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Eriksen, R. L.

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Feng, M.

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

Feng, M. D.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Gao, Z. J.

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Gong, R.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Groever, B.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Guo, H.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Guo, W. L.

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

Guo, Z.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Han, F. Y.

Han, L.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Han, Z.

He, B.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

He, Q.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

He, S.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hong, W.

Huang, G. L.

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Huang, H.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Huang, L.

Huang, L. L.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Huang, T. J.

Jin, G. F.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Jing, L.

Jun Cui, T.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Kildishev, A. V.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Kwon, D. H.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Leosson, K.

Li, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Li, H.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Li, H. P.

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

Li, J. S.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Li, K. F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Li, X.

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Li, Y.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Li, Y. F.

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Li, Z.

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

Li, Z. Q.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Liang, J. J.

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Liang, Z.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Ling, Y.

Liu, G.

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

Liu, J. Y.

Liu, K. Y.

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

Liu, P. K.

Liu, S.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Liu, T.

Liu, W.

Liu, Z. Y.

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

Luo, W.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Lv, Y. G.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Ma, H.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Meng, Y.

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

Meng, Y. Y.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Mueller, J. B.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Ni, X.

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nielsen, M. G.

Noor, A.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Oh, J.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Popov, V.

V. Popov, F. Boust, and S. N. Burokur, “Controlling diffraction patterns with metagratings,” Phys. Rev. Appl. 10(1), 011002 (2018).
[Crossref]

Pors, A.

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Plasmonic metagratings for simultaneous determination of Stokes parameters,” Optica 2(8), 716–723 (2015).
[Crossref]

A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013).
[Crossref] [PubMed]

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Pun, E. Y. B.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Qi, J.

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

Qiu, C. W.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Qiu, J.

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

Qu, S.

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

Qu, S. B.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Ratni, B.

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rho, J.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Rubin, N. A.

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Shalaev, V. M.

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Sun, S.

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Sun, S. L.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Sun, W.

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

Sun, Y. M.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Tan, Q. F.

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Tang, S. W.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Tao, Z.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tcvetkova, S. N.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Tretyakov, S. A.

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Wang, G. M.

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Wang, J.

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

Wang, J. F.

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Wang, Q. J.

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

Wang, W.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

Wang, Y.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Wang, Z.

Y. Ling, L. Huang, W. Hong, T. Liu, L. Jing, W. Liu, and Z. Wang, “Polarization-switchable and wavelength-controllable multi-functional metasurface for focusing and surface-plasmon-polariton wave excitation,” Opt. Express 25(24), 29812–29821 (2017).
[Crossref] [PubMed]

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

Wen, D.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Wong, A. M.

A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
[Crossref]

Wong, P. W. H.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Wu, C.

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

Wu, Q.

Xia, H.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Xiao, S.

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xie, D.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Xie, W.

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

Xu, H. X.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

Xu, Q.

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Xu, Z.

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Yang, Y.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Yang Zhou, X.

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

Ye, Z.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yin, L. Z.

Yin, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Yuan, L. R.

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

Yuan, T.

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Yuan, Y.

Yue, F.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zenin, V. A.

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, A. X.

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhang, H.

Q. Chen and H. Zhang, “Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna,” IEEE Access 6, 74772–74777 (2018).
[Crossref]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, K.

Zhang, S.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

Zhang, X.

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

Zhang, Y.

Zhao, J. L.

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Zhao, J. N.

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Zheng, G.

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Zhou, H.

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

Zhou, L.

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, “Flat metasurfaces to focus electromagnetic waves in reflection geometry,” Opt. Lett. 37(23), 4940–4942 (2012).
[Crossref] [PubMed]

Zhu, A. Y.

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

Zhu, Y. Y.

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

ACS Nano (1)

F. Ding, Z. Wang, S. He, V. M. Shalaev, and A. V. Kildishev, “Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach,” ACS Nano 9(4), 4111–4119 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

F. Ding, A. Pors, Y. Chen, V. A. Zenin, and S. I. Bozhevolnyi, “Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces,” ACS Photonics 4(4), 943–949 (2017).
[Crossref]

H. X. Xu, L. Han, Y. Li, Y. M. Sun, J. L. Zhao, S. Zhang, and C. W. Qiu, “Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control,” ACS Photonics 6(1), 211–220 (2019).
[Crossref]

Adv. Opt. Mater. (2)

T. Cai, S. W. Tang, G. M. Wang, H. X. Xu, S. L. Sun, Q. He, and L. Zhou, “High‐performance bifunctional metasurfaces in transmission and reflection geometries,” Adv. Opt. Mater. 5(2), 1600506 (2017).
[Crossref]

W. Luo, S. Xiao, Q. He, S. Sun, and L. Zhou, “Photonic spin Hall effect with nearly 100% efficiency,” Adv. Opt. Mater. 3(8), 1102–1108 (2015).
[Crossref]

Appl. Phys. Express (1)

C. Wu, Y. Cheng, W. Wang, B. He, and R. Gong, “Ultra-thin and polarization-independent phase gradient metasurface for high-efficiency spoof surface-plasmon-polariton coupling,” Appl. Phys. Express 8(12), 122001 (2015).
[Crossref]

Appl. Phys. Lett. (2)

J. F. Wang, S. B. Qu, H. Ma, Z. Xu, A. X. Zhang, H. Zhou, H. Y. Chen, and Y. F. Li, “High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces,” Appl. Phys. Lett. 101(20), 201104 (2012).
[Crossref]

H. Chu, J. Qi, S. Xiao, and J. Qiu, “A thin wideband high-spatial-resolution focusing metasurface for near-field passive millimeter-wave imaging,” Appl. Phys. Lett. 112(17), 174101 (2018).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Meng, H. Ma, M. Feng, J. Wang, Z. Li, and S. Qu, “Independent excitation of spoof surface plasmon polaritons for orthogonal linear polarized incidences,” Appl. Phys., A Mater. Sci. Process. 124(10), 707 (2018).
[Crossref]

IEEE Access (3)

K. Y. Liu, W. L. Guo, G. M. Wang, H. P. Li, and G. Liu, “A novel broadband bi-functional metasurface for vortex generation and simultaneous rcs reduction,” IEEE Access 6, 63999–64007 (2018).
[Crossref]

J. J. Liang, G. L. Huang, J. N. Zhao, Z. J. Gao, and T. Yuan, “Wideband phase-gradient metasurface antenna with focused beams,” IEEE Access 7, 20767–20772 (2019).
[Crossref]

Q. Chen and H. Zhang, “Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna,” IEEE Access 6, 74772–74777 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Ding and S. I. Bozhevolnyi, “A review of unidirectional surface plasmon polariton metacouplers,” IEEE J. Sel. Top. Quantum Electron. 25(3), 1–11 (2019).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. M. Wong, P. Christian, and G. V. Eleftheriades, “Binary huygens’ metasurfaces: Experimental demonstration of simple and efficient near-grazing retroreflectors for te and tm polarizations,” IEEE Trans. Antenn. Propag. 66(6), 2892–2903 (2018).
[Crossref]

J. Appl. Phys. (1)

F. Y. Han, T. J. Huang, L. Z. Yin, J. Y. Liu, and P. K. Liu, “Superfocusing plate of terahertz waves based on a gradient refractive index metasurface,” J. Appl. Phys. 124(20), 204902 (2018).
[Crossref]

J. Phys. D Appl. Phys. (2)

Z. Y. Liu, Q. J. Wang, L. R. Yuan, and Y. Y. Zhu, “A multi-functional plasmonic metasurface for anomalous reflection and optical rotation on the basis of anisotropic building blocks,” J. Phys. D Appl. Phys. 50(24), 245103 (2017).
[Crossref]

Y. Y. Meng, H. Ma, J. F. Wang, Y. G. Lv, M. D. Feng, Z. Q. Li, and S. B. Qu, “Dispersion engineering of metasurfaces for supporting both TM and TE spoof surface plasmon polariton,” J. Phys. D Appl. Phys. 51(4), 045109 (2018).
[Crossref]

Light Sci. Appl. (3)

W. Sun, Q. He, S. Sun, and L. Zhou, “High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations,” Light Sci. Appl. 5(1), e16003 (2016).
[Crossref] [PubMed]

S. Liu, T. Jun Cui, A. Noor, Z. Tao, H. Chi Zhang, G. Dong Bai, Y. Yang, and X. Yang Zhou, “Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves,” Light Sci. Appl. 7(5), 18008 (2018).
[Crossref] [PubMed]

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref] [PubMed]

Nano Lett. (1)

A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, “Broadband focusing flat mirrors based on plasmonic gradient metasurfaces,” Nano Lett. 13(2), 829–834 (2013).
[Crossref] [PubMed]

Nat. Commun. (3)

D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, “Helicity multiplexed broadband metasurface holograms,” Nat. Commun. 6(1), 8241 (2015).
[Crossref] [PubMed]

L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4(1), 2808 (2013).
[Crossref]

X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4(1), 2807 (2013).
[Crossref]

Nat. Mater. (1)

S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, and L. Zhou, “Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves,” Nat. Mater. 11(5), 426–431 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10(4), 308–312 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Optica (2)

Photon. Res. (1)

Phys. Rev. Appl. (1)

V. Popov, F. Boust, and S. N. Burokur, “Controlling diffraction patterns with metagratings,” Phys. Rev. Appl. 10(1), 011002 (2018).
[Crossref]

Phys. Rev. Lett. (1)

J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization,” Phys. Rev. Lett. 118(11), 113901 (2017).
[Crossref] [PubMed]

Phys. Rev. X (1)

V. S. Asadchy, A. Díaz-Rubio, S. N. Tcvetkova, D. H. Kwon, A. Elsakka, M. Albooyeh, and S. A. Tretyakov, “Flat engineered multichannel reflectors,” Phys. Rev. X 7(3), 031046 (2017).
[Crossref]

Sci. Rep. (2)

H. Huang, H. Xia, W. Xie, Z. Guo, H. Li, and D. Xie, “Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions,” Sci. Rep. 8(1), 4183 (2018).
[Crossref] [PubMed]

J. Duan, H. Guo, S. Dong, T. Cai, W. Luo, Z. Liang, Q. He, L. Zhou, and S. Sun, “High-efficiency chirality-modulated spoof surface plasmon meta-coupler,” Sci. Rep. 7(1), 1354 (2017).
[Crossref] [PubMed]

Science (3)

X. Yin, Z. Ye, J. Rho, Y. Wang, and X. Zhang, “Photonic spin Hall effect at metasurfaces,” Science 339(6126), 1405–1407 (2013).
[Crossref] [PubMed]

M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science 352(6290), 1190–1194 (2016).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Other (1)

K. Zhang, D. Li, K. Chang, K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic view of the bifunctional meta-coupler that can realize circular polarization-controlled unidirectional SSP excitation and anomalous reflection. The meta-coupler consists of a coupling metasurface and a propagation metasurface.
Fig. 2
Fig. 2 (a) Schematic of the unit cell of coupling metasurface. The period and thickness of the unit cell are 233μm and 50μm, respectively. The exact parameters of the unit cells used in this work are listed in Table 1 and their respective amplitude and reflection phase versus frequency under the illumination of x-polarized EMWs are plotted in (b) and (d). The exact reflection phase for x- and y-polarized incidence are plotted in (c), where Δφ = |φx − φy| approximately equals to 180° for all unit cells to guarantee that rxx = -ryy.
Fig. 3
Fig. 3 (a) Schematic of the unit cells of the propagation metasurface. The length of the four rods are bx = 95 μm, lx = 133 μm, by = 107 μm, and ly = 150 μm. The period and thickness of the unit cell are 233μm and 50μm, respectively. The electric current and electric field distributions of the TE and TM mode SSP are plotted in (b) and (d), respectively. The dispersion curve (c) of the TE and TM mode SSP cross at f = 0.3 THz with the longitudinal wave vector kx = 0.55π / p. The inset in (c) illustrates the Q-factor of the coupling metasurface versus the loss tangent tanδ of the dielectric spacer.
Fig. 4
Fig. 4 (a) Schematic view of the complete structure of the designed bifunctional meta-coupler. (b) and (c) are respective scattering electric field components in the x- and y-directions under the illumination of RCP waves. The RCP incident waves are anomalously reflected with the reflection angle θr = 13.9°. (d) and (e) are electric field components in the x- and y-directions under the illumination of the LCP waves. Surface waves are excited on the coupling metasurface and guided out from the propagating metasurface. The black dotted line represents the boundary between the coupling metasurface and propagating metasurface regions.
Fig. 5
Fig. 5 (a) Schematic of SSP excitation under the LCP illumination, where “I” represents the integral position of power of SSP. (b) The far-field patterns of the incident and reflected waves for the RCP incidence. (c) The converting efficiencies of the LCP and RCP incidence under the condition that the waist-width w = 1.2 λ, which are plotted by blue and red curves, respectively. The different shadow colors represent the corresponding frequency intervals that the excitation efficiencies are over 50%. (d) The relations between the converting efficiencies and incident Gaussian beam waist-width w. The inset illustrates the definition of waist-width. In the range from 0.7 λ to 1.7λ, the bifunctional metasurface can maintain high efficiency (>48%) for both the LCP and RCP incidence.

Tables (1)

Tables Icon

Table 1 Exact Geometric Parameters of the Units Cells unit:μm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R(0)=[ 1 2 ( r xx + r yy )+ i 2 ( r xy r yx ) 1 2 ( r xx r yy ) i 2 ( r xy + r yx ) 1 2 ( r xx r yy )+ i 2 ( r xy + r yx ) 1 2 ( r xx + r yy ) i 2 ( r xy r yx ) ].
R ˜ (0)=[ 1 2 ( r xx + r yy ) 1 2 ( r xx r yy ) 1 2 ( r xx r yy ) 1 2 ( r xx + r yy ) ],
R ˜ (θ)=Q(θ) R ˜ (0) Q (θ)=[ 1 2 ( r xx + r yy ) 1 2 ( r xx r yy ) e j2θ 1 2 ( r xx r yy ) e j2θ 1 2 ( r xx + r yy ) ],
R ˜ (θ)=[ 0 r xx e j2θ r xx e j2θ 0 ].
R ˜ (θ)=[ 0 e j(φ2θ) e j(φ+2θ) 0 ].

Metrics