Abstract

In this study, metal spheres were implanted into glass by continuous-wave (CW) laser illumination, which manipulated the metal sphere inside the glass. The spheres moved at approximately 100 mm/s, which is 100 times faster compared to conventional movement. The movement mechanism was clarified by in situ, cross-sectional, and microscopic observations. With a high laser power density, the metal spheres moved fast with plasma emission, and their trajectory contained fine iron particles. The temperatures of the metal sphere with slow (<0.1 mm/s) and fast (>1 mm/s) speeds were 1,900 and 2,900 K, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Length control of metal particles containing trajectories generated by metal sphere movement and elucidation of the relationship between metal sphere speed and metal addiction

Nobuyasu Nishioka, Hirofumi Hidai, Souta Matsusaka, Akira Chiba, and Noboru Morita
Opt. Mater. Express 10(4) 1105-1119 (2020)

Metal particle manipulation by laser irradiation in borosilicate glass

Hirofumi Hidai, Takato Yamazaki, Sho Itoh, Kuniaki Hiromatsu, and Hitoshi Tokura
Opt. Express 18(19) 20313-20320 (2010)

Moving force of metal particle migration induced by laser irradiation in borosilicate glass

Hirofumi Hidai, Makoto Matsushita, Souta Matsusaka, Akira Chiba, and Noboru Morita
Opt. Express 21(16) 18955-18962 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
    [Crossref] [PubMed]
  3. S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
    [Crossref] [PubMed]
  4. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
    [Crossref]
  5. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [Crossref] [PubMed]
  6. H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
    [Crossref]
  7. M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
    [Crossref] [PubMed]
  8. R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
    [Crossref]
  9. J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
    [Crossref]
  10. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3(10), 1182–1186 (1964).
    [Crossref]
  11. Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
    [Crossref]
  12. T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
    [Crossref]
  13. H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
    [Crossref] [PubMed]
  14. H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
    [Crossref] [PubMed]
  15. T. Kishi, T. Kokan, Y. Yoshida, T. Iwamoto, H. Hidai, F. Noritake, N. Matsushita, and T. Yano, “Compositional redistribution in CaO-Al2O3-SiO2 glass induced by the migration of a steel microsphere due to continuous-wave-laser irradiation,” Opt. Express 26(10), 13020–13026 (2018).
    [Crossref] [PubMed]
  16. N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
    [Crossref]
  17. S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, 2014), Chap. 3.
  18. E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
    [Crossref]
  19. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
    [Crossref]
  20. D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), Chap. 1 and 5.
  21. S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
    [Crossref]
  22. Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
    [Crossref]
  23. H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
    [Crossref]
  24. Thermophysical Properties Handbook Editorial Committee, Thermophysical Properties Handbook [in Japanese] (Yokendo Co., Ltd, 1990), Chap. A.
  25. P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Academic Press, 2012), Chap. 8.
  26. L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts. (Taylor & Francis, 2005), Chap. 5.

2018 (1)

2017 (1)

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

2016 (1)

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

2015 (1)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

2012 (1)

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

2010 (2)

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

2009 (1)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

2008 (1)

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[Crossref]

2006 (1)

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

2005 (1)

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

2004 (1)

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

2003 (2)

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

2001 (1)

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

1997 (1)

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

1989 (1)

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

1980 (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

1964 (1)

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Asakawa, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Ashkin, A.

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Barbosa, L. C.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Barjas-Castro, M. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Bäuerle, D.

D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), Chap. 1 and 5.

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Berg, H. C.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Bishop, A. I.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Blair, D. F.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Block, S. M.

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Borrelli, N. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Brandão, M. M.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Bufetov, I. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Cesar, C. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Chiba, A.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Clarkson, W. A.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Cohen, I. M.

P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Academic Press, 2012), Chap. 8.

Costa, F. F.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Dianov, E. M.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Dowling, D. R.

P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Academic Press, 2012), Chap. 8.

Ebendorff-Heidepriem, H.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Efremov, V. P.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Ehrt, D.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Fontes, A.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Fortov, V. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Frolov, A. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Gräfe, M.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Griebner, U.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Gross, S.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Hamlin, S. J.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Hanna, D. C.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Heckenberg, N. R.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Heilmann, R.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Hidai, H.

T. Kishi, T. Kokan, Y. Yoshida, T. Iwamoto, H. Hidai, F. Noritake, N. Matsushita, and T. Yano, “Compositional redistribution in CaO-Al2O3-SiO2 glass induced by the migration of a steel microsphere due to continuous-wave-laser irradiation,” Opt. Express 26(10), 13020–13026 (2018).
[Crossref] [PubMed]

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Hiromatsu, K.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Itoh, S.

Iwamoto, T.

T. Kishi, T. Kokan, Y. Yoshida, T. Iwamoto, H. Hidai, F. Noritake, N. Matsushita, and T. Yano, “Compositional redistribution in CaO-Al2O3-SiO2 glass induced by the migration of a steel microsphere due to continuous-wave-laser irradiation,” Opt. Express 26(10), 13020–13026 (2018).
[Crossref] [PubMed]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Jiang, S.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Joseph, I.

L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts. (Taylor & Francis, 2005), Chap. 5.

Kishi, T.

T. Kishi, T. Kokan, Y. Yoshida, T. Iwamoto, H. Hidai, F. Noritake, N. Matsushita, and T. Yano, “Compositional redistribution in CaO-Al2O3-SiO2 glass induced by the migration of a steel microsphere due to continuous-wave-laser irradiation,” Opt. Express 26(10), 13020–13026 (2018).
[Crossref] [PubMed]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Kobayashi, M.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Koch, R.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Koester, C. J.

Kokan, T.

Kulish, M. I.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Kundu, P. K.

P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Academic Press, 2012), Chap. 8.

Lee, S. S.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

Matsusaka, S.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Matsushita, N.

Meany, T.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Melkumov, M. A.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Montenero, A.

L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts. (Taylor & Francis, 2005), Chap. 5.

Morita, N.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Myers, M. J.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Nagase, R.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Nieminen, T. A.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Nishioka, N.

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

Nonohara, Y.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[Crossref]

Noritake, F.

Ohnishi, T.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[Crossref]

Park, C. H.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

Perez-Leija, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Philipps, J. F.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Pye, L. D.

L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts. (Taylor & Francis, 2005), Chap. 5.

Rakitin, A. E.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

Rhonehouse, D.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Rubinsztein-Dunlop, H.

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

Saad, S. T. O.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Sauerbrey, R.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Schönnagel, H.

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Shuto, Y.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Snitzer, E.

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Steel, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Szameit, A.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Todoroki, S.

S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, 2014), Chap. 3.

Todoroki, S. I.

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

Tokura, H.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

H. Hidai, T. Yamazaki, S. Itoh, K. Hiromatsu, and H. Tokura, “Metal particle manipulation by laser irradiation in borosilicate glass,” Opt. Express 18(19), 20313–20320 (2010).
[Crossref] [PubMed]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Töpfer, T.

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Ukita, H.

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[Crossref]

Wada, J.

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Withford, M. J.

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Yamazaki, T.

Yanagi, S.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

Yano, T.

Yoon, Y. T.

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

Yoshida, Y.

Yoshioka, M.

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. F. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, and N. F. Borrelli, “Diode-pumped erbium-ytterbium-glass laser passively Q-switched with a PbS semiconductor quantum-dot doped glass,” Appl. Phys. B 72(2), 175–178 (2001).
[Crossref]

Appl. Phys. Express (1)

Y. T. Yoon, C. H. Park, and S. S. Lee, “Highly efficient color filter incorporating a thin metal-dielectric resonant structure,” Appl. Phys. Express 5(2), 022501 (2012).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

N. Nishioka, H. Hidai, S. Matsusaka, A. Chiba, and N. Morita, “Continuous-wave laser-induced glass fiber generation,” Appl. Phys., A Mater. Sci. Process. 123(9), 600 (2017).
[Crossref]

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Glass modification by continuous-wave laser backside irradiation (CW-LBI),” Appl. Phys., A Mater. Sci. Process. 96(4), 869–872 (2009).
[Crossref]

Eur. J. Haematol. (1)

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. O. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase, “Fiber fuse phenomenon in step-index single-mode optical fibers,” IEEE J. Quantum Electron. 40(8), 1113–1121 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov, “High-speed photography, spectra, and temperature of optical discharge in silica-based fibers,” IEEE Photonics Technol. Lett. 18(6), 752–754 (2006).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Hidai, M. Yoshioka, K. Hiromatsu, and H. Tokura, “Structural Changes in Silica Glass by Continuous-Wave Laser Backside Irradiation,” J. Am. Ceram. Soc. 93(6), 1597–1601 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. I. Todoroki, “In-situ observation of fiber-fuse propagation,” Jpn. J. Appl. Phys. 44(6A), 4022–4024 (2005).
[Crossref]

Laser Photonics Rev. (1)

T. Meany, M. Gräfe, R. Heilmann, A. Perez-Leija, S. Gross, M. J. Steel, M. J. Withford, and A. Szameit, “Laser written circuits for quantum photonics,” Laser Photonics Rev. 9(4), 363–384 (2015).
[Crossref]

Nature (1)

S. M. Block, D. F. Blair, and H. C. Berg, “Compliance of bacterial flagella measured with optical tweezers,” Nature 338(6215), 514–518 (1989).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Koch, W. A. Clarkson, D. C. Hanna, S. Jiang, M. J. Myers, D. Rhonehouse, S. J. Hamlin, U. Griebner, and H. Schönnagel, “Efficient room temperature cw Yb:glass laser pumped by a 946 nm Nd:YAG laser,” Opt. Commun. 134(1–6), 175–178 (1997).
[Crossref]

Opt. Express (2)

Opt. Rev. (1)

H. Ukita, T. Ohnishi, and Y. Nonohara, “Rotation rate of a three-wing rotor illuminated by upward-directed focused beam in optical tweezers,” Opt. Rev. 15(2), 97–104 (2008).
[Crossref]

Phys. Rev. A (2)

A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical application and measurement of torque on microparticles of isotropic nonabsorbing material,” Phys. Rev. A 68(3), 033802 (2003).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Sci. Rep. (1)

H. Hidai, J. Wada, T. Iwamoto, S. Matsusaka, A. Chiba, T. Kishi, and N. Morita, “Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass,” Sci. Rep. 6(1), 38545 (2016).
[Crossref] [PubMed]

Science (1)

A. Ashkin, “Applications of laser radiation pressure,” Science 210(4474), 1081–1088 (1980).
[Crossref] [PubMed]

Other (5)

S. Todoroki, Fiber Fuse: Light-Induced Continuous Breakdown of Silica Glass Optical Fiber (Springer, 2014), Chap. 3.

D. Bäuerle, Laser Processing and Chemistry (Springer, 2011), Chap. 1 and 5.

Thermophysical Properties Handbook Editorial Committee, Thermophysical Properties Handbook [in Japanese] (Yokendo Co., Ltd, 1990), Chap. A.

P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid Mechanics (Academic Press, 2012), Chap. 8.

L. D. Pye, A. Montenero, and I. Joseph, Properties of Glass-Forming Melts. (Taylor & Francis, 2005), Chap. 5.

Supplementary Material (2)

NameDescription
» Visualization 1       Visualization 1 video of Fig 2(1)
» Visualization 2       Visualization 2 video of Fig 2(2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the experimental apparatus.
Fig. 2
Fig. 2 Time-lapse images of laser-irradiated metal sphere: (1) slow movement at power density of 53 kW/cm2 (Visualization 1); (2) fast movement at power density of 62 kW/cm2 (Visualization 2); (1-a), (2-a) metal sphere heated by laser illumination; (1-b)-(1-d) metal sphere moving slowly in the laser source direction with a transparent trajectory and without emission; (2-b),(2-d) metal sphere moving fast toward the laser source with a black trajectory and emission; (2-d) weakened emission.
Fig. 3
Fig. 3 Relation between time t and velocity v of metal sphere: (a) slow movement and (b) fast movement.
Fig. 4
Fig. 4 Relation between laser power density I and maximum velocity vMax of the metal sphere in each experiment. A higher laser power density increased vMax and caused a transition from slow movement to fast movement to full dissipation.
Fig. 5
Fig. 5 Snapshots of fiber fuse at power density of 13 MW/cm2 with a velocity of 1.5 m/s.
Fig. 6
Fig. 6 Laser illumination condition for metal sphere before and after the movement: R is the radius of the metal sphere, ω(z) is the laser spot radius, ω(z0) is the laser spot radius at the point of transition from the fast movement to slow movement.
Fig. 7
Fig. 7 Heat input (Case 1) to metal spheres at ω(z0), point of transition from fast movement to slow movement, and comparison with the heat input in Case 2. The triangle, square, and circle symbols indicate the first, second, and third experimental trials, respectively. The open and closed figure symbols indicate Case 1 and Case 2, respectively. Only the maximum heat input is indicated with open figure symbols.
Fig. 8
Fig. 8 Spectra of (a) slow movement, (b) fast movement, and (c) fiber fuse. The black line indicates the emission observed with the spectroscope; the red line indicates the Plank’s law fitting of the measured emission. The metal sphere temperatures T were as follows: TSlow = 1,900 K, TFast = 2,900 K, TFiber fuse = 3,600 K. The fast movement and fiber fuse emission spectra had similar shapes.
Fig. 9
Fig. 9 (a-d) Optical and (e, f) SEM micrographs of fast movement trajectory; micrographs of black trajectory in fast movement.
Fig. 10
Fig. 10 Mechanism of metal sphere movements: (a) slow movement; (b) fast movement.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E bλ = c 1 λ 5 exp( c 2 λT )1 .
I(R)=Iexp( 2 R 2 ω (z) 2 ).
P(R)=P()[ 1exp( 2 R 2 ω (z) 2 ) ].
P Case2(n) = P Case1(n) ±0.4W.
F Vis =3πdμν.

Metrics