Abstract

Image projection by holographic allows efficient and compact optical setups; nevertheless, the limited throw angle and 1:1 image aspect ratio are impractical. We present the method to increase the diffractive angle of a spatial light modulator in one and two directions by introducing the highly 2-dimensionally tilted illuminating beam. The inevitable image aberrations, such as astigmatism, for off-axis imaging are corrected by proper modifications of the phase patterns on the modulator. Experimental results show the image aspect ratio of 2.4:1 suitable for human vision, with sustained image contrast and noise level. Study of the experimental diffractive efficiency is also presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic display with tilted spatial light modulator

Tomasz Kozacki
Appl. Opt. 50(20) 3579-3588 (2011)

Holographic zoom micro-projection system based on three spatial light modulators

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(6) 8048-8058 (2019)

References

  • View by:
  • |
  • |
  • |

  1. H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, 1–5 June (2015), paper WS-1.
  2. F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
    [Crossref]
  3. M. Chen, G. Tkachenko, K. Dholakia, and M. Mazilu, “Optically trapped microscopic particles in a perfect fractional vortex beam,” in Frontiers in Optics 2016 (Optical Society of America, 2016), paper JW4A.198.
  4. D. G. Grier and Y. Roichman, “Holographic optical trapping,” Appl. Opt. 45(5), 880–887 (2006).
    [Crossref] [PubMed]
  5. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
    [Crossref]
  6. M. Hasler, T. Haist, and W. Osten, “Adjustment and application of spatial light modulators for holography,” in Imaging and Applied Optics 2016 (Optical Society of America, 2016), paper DW1D.1.
  7. M. Kujawińska, R. Porras-Aguilar, and W. Zaperty, “LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19(3), 445–458 (2012).
    [Crossref]
  8. M. Makowski, I. Ducin, K. Kakarenko, J. Suszek, M. Sypek, and A. Kolodziejczyk, “Simple holographic projection in color,” Opt. Express 20(22), 25130–25136 (2012).
    [Crossref] [PubMed]
  9. J. Bolek and M. Makowski, “Non-invasive correction of thermally induced wavefront aberrations of spatial light modulator in holographic projection,” Opt. Express 27(7), 10193–10207 (2019).
    [Crossref] [PubMed]
  10. F. Wyrowski and O. Bryngdahl, “Speckle-free reconstruction in digital holography,” J. Opt. Soc. Am. A 6(8), 1171–1174 (1989).
    [Crossref]
  11. A. Czerwiński, K. Kakarenko, M. Sypek, M. Makowski, I. Ducin, J. Suszek, A. Kolodziejczyk, and J. Bomba, “Modeling of the optical system illuminated by quasi-monochromatic spatially incoherent light: new numerical approach,” Opt. Lett. 37(22), 4723–4725 (2012).
    [Crossref] [PubMed]
  12. S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1(4), 193–195 (2009).
    [Crossref]
  13. F. Wyrowski and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” J. Opt. Soc. Am. A 5(7), 1058–1065 (1988).
    [Crossref]
  14. G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
    [Crossref]
  15. P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
    [Crossref]
  16. A. P. Kowalczyk, M. Makowski, I. Ducin, M. Sypek, and A. Kolodziejczyk, “Collective matrix of spatial light modulators for increased resolution in holographic image projection,” Opt. Express 26(13), 17158–17169 (2018).
    [Crossref] [PubMed]
  17. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  18. M. Chlipała and T. Kozacki, “Holographic display with LED sources illumination and enlarged viewing angle,” Proc. SPIE 10031, 100310V (2016).
    [Crossref]
  19. L. Onural, “Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror,” Proc. SPIE 10126, 101260I (2017).
    [Crossref]
  20. T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
    [Crossref]
  21. T. Kozacki, “Holographic display with tilted spatial light modulator,” Appl. Opt. 50(20), 3579–3588 (2011).
    [Crossref] [PubMed]
  22. K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
    [Crossref]
  23. I. A. Erteza, Diffraction Efficiency Analysis for Multi-level Diffractive Optical Elements (Office of Scientific & Technical Information Technical Reports, 1995).
  24. W. Harm, C. Roider, S. Bernet, and M. Ritsch-Marte, “Tilt-effect of holograms and images displayed on a spatial light modulator,” Opt. Express 23(23), 30497–30511 (2015).
    [Crossref] [PubMed]
  25. K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
    [Crossref]

2019 (2)

J. Bolek and M. Makowski, “Non-invasive correction of thermally induced wavefront aberrations of spatial light modulator in holographic projection,” Opt. Express 27(7), 10193–10207 (2019).
[Crossref] [PubMed]

P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
[Crossref]

2018 (1)

2017 (1)

L. Onural, “Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror,” Proc. SPIE 10126, 101260I (2017).
[Crossref]

2016 (2)

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

M. Chlipała and T. Kozacki, “Holographic display with LED sources illumination and enlarged viewing angle,” Proc. SPIE 10031, 100310V (2016).
[Crossref]

2015 (1)

2014 (2)

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

2012 (3)

2011 (1)

2010 (1)

K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
[Crossref]

2009 (1)

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1(4), 193–195 (2009).
[Crossref]

2008 (1)

2006 (1)

2005 (1)

K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
[Crossref]

1989 (1)

1988 (1)

Abakoumov, D.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Baxter, G.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Beeck, A.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Bernet, S.

Bolek, J.

Bomba, J.

Bryngdahl, O.

Chen, S.-H.

K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
[Crossref]

Chlipala, M.

M. Chlipała and T. Kozacki, “Holographic display with LED sources illumination and enlarged viewing angle,” Proc. SPIE 10031, 100310V (2016).
[Crossref]

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Czerwinski, A.

Ducin, I.

Endo, Y.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Erteza, I. A.

I. A. Erteza, Diffraction Efficiency Analysis for Multi-level Diffractive Optical Elements (Office of Scientific & Technical Information Technical Reports, 1995).

Fan Chiang, K.-H.

K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
[Crossref]

Finke, G.

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

Frisken, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Grier, D. G.

Hahn, J.

Haist, T.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Hara, T.

H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, 1–5 June (2015), paper WS-1.

Harm, W.

Hasan, S. B.

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1(4), 193–195 (2009).
[Crossref]

Hasegawa, S.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Hirayama, R.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Hiyama, D.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Inoue, T.

H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, 1–5 June (2015), paper WS-1.

Ito, T.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Kakarenko, K.

Kakue, T.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Kim, H.

Kolodziejczyk, A.

Korbuszewski, D.

P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
[Crossref]

Kowalczyk, A. P.

Kozacki, T.

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

M. Chlipała and T. Kozacki, “Holographic display with LED sources illumination and enlarged viewing angle,” Proc. SPIE 10031, 100310V (2016).
[Crossref]

T. Kozacki, “Holographic display with tilted spatial light modulator,” Appl. Opt. 50(20), 3579–3588 (2011).
[Crossref] [PubMed]

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1(4), 193–195 (2009).
[Crossref]

Kujawinska, M.

P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
[Crossref]

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

M. Kujawińska, R. Porras-Aguilar, and W. Zaperty, “LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19(3), 445–458 (2012).
[Crossref]

Lee, B.

Lim, Y.

Makowski, M.

Nagahama, Y.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Okada, N.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Onural, L.

L. Onural, “Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror,” Proc. SPIE 10126, 101260I (2017).
[Crossref]

Osten, W.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Park, G.

Peter, A.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Poole, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Porras-Aguilar, R.

M. Kujawińska, R. Porras-Aguilar, and W. Zaperty, “LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19(3), 445–458 (2012).
[Crossref]

Pruss, C.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Ritsch-Marte, M.

Roichman, Y.

Roider, C.

Schaal, F.

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

Shimobaba, T.

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Siemion, A.

K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
[Crossref]

K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
[Crossref]

Stepien, P.

P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
[Crossref]

Suszek, J.

Sypek, M.

Toyoda, H.

H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, 1–5 June (2015), paper WS-1.

Wojnowski, D.

K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
[Crossref]

Wu, S.-T.

K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
[Crossref]

Wyrowski, F.

Zaperty, W.

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

M. Kujawińska, R. Porras-Aguilar, and W. Zaperty, “LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19(3), 445–458 (2012).
[Crossref]

Zhou, H.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Appl. Opt. (2)

ETRI J. (1)

P. Stępień, D. Korbuszewski, and M. Kujawińska, “Digital Holographic Microscopy with extended field of view using tool for generic image stitching,” ETRI J. 41(1), 73–83 (2019).
[Crossref]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

K.-H. Fan Chiang, S.-H. Chen, and S.-T. Wu, “Diffraction effect on high-resolution liquid-crystal-on-silicon devices,” Jpn. J. Appl. Phys. 44(5A5R), 3068–3072 (2005).
[Crossref]

Metrol. Meas. Syst. (1)

M. Kujawińska, R. Porras-Aguilar, and W. Zaperty, “LCoS spatial light modulators as active phase elements of full-field measurement systems and sensors,” Metrol. Meas. Syst. 19(3), 445–458 (2012).
[Crossref]

Opt. Commun. (1)

T. Shimobaba, M. Makowski, T. Kakue, N. Okada, Y. Endo, R. Hirayama, D. Hiyama, S. Hasegawa, Y. Nagahama, and T. Ito, “Numerical investigation of lensless zoomable holographic multiple projections to tilted planes,” Opt. Commun. 333, 274–280 (2014).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

G. Finke, M. Kujawińska, T. Kozacki, and W. Zaperty, “Spatiotemporal multiplexing method for visual field of view extension in holographic displays with naked eye observation,” Opto-Electron. Rev. 24(3), 117–125 (2016).
[Crossref]

Photonics Lett. Pol. (1)

S. B. Hasan and T. Kozacki, “Method for enhancing the resolution of holographic displays,” Photonics Lett. Pol. 1(4), 193–195 (2009).
[Crossref]

Proc. SPIE (4)

F. Schaal, T. Haist, A. Peter, A. Beeck, C. Pruss, and W. Osten, “Applications of diffractive optical elements for optical measurement techniques,” Proc. SPIE 9271, 927105 (2014).
[Crossref]

M. Chlipała and T. Kozacki, “Holographic display with LED sources illumination and enlarged viewing angle,” Proc. SPIE 10031, 100310V (2016).
[Crossref]

L. Onural, “Design of a 360-degree holographic 3D video display using commonly available display panels and a paraboloid mirror,” Proc. SPIE 10126, 101260I (2017).
[Crossref]

K. Kakarenko, I. Ducin, M. Makowski, A. Siemion, A. Siemion, J. Suszek, M. Sypek, D. Wojnowski, and A. Kolodziejczyk, “Modelling of the space invariant optical systems with a spatially incoherent illumination,” Proc. SPIE 7746, 77460N (2010).
[Crossref]

Other (5)

I. A. Erteza, Diffraction Efficiency Analysis for Multi-level Diffractive Optical Elements (Office of Scientific & Technical Information Technical Reports, 1995).

H. Toyoda, T. Inoue, and T. Hara, “Application of liquid crystal on silicon spatial light modulator (LCOS-SLM) for manipulation and sensing,” in 14th Workshop on Information Optics (WIO), Kyoto, Japan, 1–5 June (2015), paper WS-1.

M. Chen, G. Tkachenko, K. Dholakia, and M. Mazilu, “Optically trapped microscopic particles in a perfect fractional vortex beam,” in Frontiers in Optics 2016 (Optical Society of America, 2016), paper JW4A.198.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly Programmable Wavelength Selective Switch Based on Liquid Crystal on Silicon Switching Elements,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference (Optical Society of America, 2006), paper OTuF2.
[Crossref]

M. Hasler, T. Haist, and W. Osten, “Adjustment and application of spatial light modulators for holography,” in Imaging and Applied Optics 2016 (Optical Society of America, 2016), paper DW1D.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Change of the effective pixel size due to the high angle SLM illumination.
Fig. 2
Fig. 2 Light beam passing through multiple SLM pixels due to high angle illumination.
Fig. 3
Fig. 3 Experimental set-up with one-direction tilt of the SLM.
Fig. 4
Fig. 4 Image saved in the computer-generated holograms with line markings used in the descriptions.
Fig. 5
Fig. 5 Image enlargement in relation to illumination angle for selected angle values.
Fig. 6
Fig. 6 Image enlargement for: a) 10° (top-left) and b) 70° (top-right) illumination angles; c) comparison of 10° and 70° angles (bottom, colors altered).
Fig. 7
Fig. 7 Intensity of lines in a reconstructed image in relation to illumination angle (left) and an exemplary image (right).
Fig. 8
Fig. 8 Line widening for exemplary illumination angles of a) 20°; b) 50°; c) 70°.
Fig. 9
Fig. 9 Widths of respective lines in a reconstructed image in relation to illumination angle: without astigmatism correction (top) and with correction (bottom).
Fig. 10
Fig. 10 Hologram reconstruction a) without SLM tilt (left) b) with the 45° angle of SLM tilt, without correction (center) c) with correction by the use of a virtual cylindrical lens.
Fig. 11
Fig. 11 Experimental configuration of the SLM positioning set-up: with one-dimensional (left) and two-dimensional tilt and rotation (right).
Fig. 12
Fig. 12 Image enlargement for: a) 10°; b) 45°; c) 70° respective illumination angles in horizontal direction with 45° rotation in the vertical directions; d) comparison of a) and c) (colors altered). Notable two-dimensional enlargement of the projected image.
Fig. 13
Fig. 13 Experimental set-up for diffraction efficiency measurements.
Fig. 14
Fig. 14 Reflectivity of the SLM for the measured illumination angles.
Fig. 15
Fig. 15 Generated diffraction grating of different periods and shapes. Left: 2-step (binary); center: 4-step; right: 8-step gratings.
Fig. 16
Fig. 16 Diffraction efficiency in relation to illumination angle.

Tables (1)

Tables Icon

Table 1 Theoretical diffraction efficiency of periodic gratings.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

mλ=asin θ m
mλ=a(sin θ m +sin θ i )
f(x,y)= e ik( x 2 f x + y 2 f y )
f y f x =cos θ i
η= P in P +1

Metrics