Abstract

Photoacoustic endomicroscopy (PAEM) is capable of imaging fine structures in digestive tract. However, conventional PAEM employs a tightly focused laser beam to irradiate the object, which results in a limited depth-of-field (DOF). Here, we propose a scanning-domain synthesis of optical beams (SDSOB) to optimize both transverse resolution and the DOF by synthetic effective focused beams in scanning domain for the PAEM. By utilizing the SDSOB technique, multiple defocused and scattered beams are refocused to synthesize virtual focuses covering a large range of depth. A transverse point spread function that is 5.7-time sharper, and a transverse spatial bandwidth that is 8.5-time broader than those of the conventional PAEM were simulatively obtained through SDSOB-PAEM at the defocus distance of 2.4 mm. We validated the transverse resolution improvement at both in- and out-focus positions via phantom experiments of carbon fibers. In addition, in vivo rabbit experiments were conducted to acquire vascular images over radial depth range of 900 µm. And further morphological analysis revealed that the SDSOB images were acquired with abundant vascular branches and nodes, large total-length and small average-length of blood vessels, which indicated that the SDSOB-PAEM achieved high-resolution imaging in distinct rectal layers. All these results suggest that the SDSOB-PAEM possesses high transverse resolution and extended DOF, which demonstrates the SDSOB-PAEM can provide more accurate information for clinical assessment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical-resolution photoacoustic endomicroscopy in vivo

Joon-Mo Yang, Chiye Li, Ruimin Chen, Bin Rao, Junjie Yao, Cheng-Hung Yeh, Amos Danielli, Konstantin Maslov, Qifa Zhou, K. Kirk Shung, and Lihong V. Wang
Biomed. Opt. Express 6(3) 918-932 (2015)

Synthetic aperture focusing technique for photoacoustic endoscopy

De Cai, Guangyao Li, Dongqing Xia, Zhongfei Li, Zhendong Guo, and Sung-Liang Chen
Opt. Express 25(17) 20162-20171 (2017)

Acoustic-resolution-based photoacoustic microscopy with non-coaxial arrangements and a multiple vertical scan for high lateral resolution in-depth

Xiaofei Luo, Xiongbing Li, Congcong Wang, Weiran Pang, Bo Wang, and Zhongchao Huang
Appl. Opt. 58(33) 9305-9309 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
    [Crossref]
  2. J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [Crossref]
  3. C. Chen, Y. Zhao, S. Yang, and D. Xing, “Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy,” Biomed. Opt. Express 6(12), 4975–4980 (2015).
    [Crossref]
  4. X. Zhu, Z. Huang, G. Wang, W. Li, D. Zou, and C. Li, “Ultrasonic detection based on polarization-dependent optical reflection,” Opt. Lett. 42(3), 439–441 (2017).
    [Crossref]
  5. A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
    [Crossref]
  6. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [Crossref]
  8. J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
    [Crossref]
  9. N. Wu, S. Ye, Q. Ren, and C. Li, “High-resolution dual-modality photoacoustic ocular imaging,” Opt. Lett. 39(8), 2451–2454 (2014).
    [Crossref]
  10. Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
    [Crossref]
  11. J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
    [Crossref]
  12. K. Jansen, A. F. W. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
    [Crossref]
  13. J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
    [Crossref]
  14. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express 16(5), 3362–3367 (2008).
    [Crossref]
  15. R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
    [Crossref]
  16. X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
    [Crossref]
  17. H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
    [Crossref]
  18. X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
    [Crossref]
  19. H. Guo, C. Song, H. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror,” Opt. Lett. 42(22), 4615–4618 (2017).
    [Crossref]
  20. J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
    [Crossref]
  21. J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
    [Crossref]
  22. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, and J. Li, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
    [Crossref]
  23. J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
    [Crossref]
  24. B. Jiang, X. Yang, and Q. Luo, “Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries,” Opt. Express 24(18), 20167–20176 (2016).
    [Crossref]
  25. J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
    [Crossref]
  26. K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
    [Crossref]
  27. K. Xiong, S. Yang, X. Li, and D. Xing, “Autofocusing optical-resolution photoacoustic endoscopy,” Opt. Lett. 43(8), 1846–1849 (2018).
    [Crossref]
  28. G. Li, Z. Guo, and S.-L. Chen, “Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging,” Opt. Express 25(21), 25023–25035 (2017).
    [Crossref]
  29. D. Cai, G. Li, D. Xia, Z. Li, Z. Guo, and S.-L. Chen, “Synthetic aperture focusing technique for photoacoustic endoscopy,” Opt. Express 25(17), 20162–20171 (2017).
    [Crossref]
  30. M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
    [Crossref]
  31. J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39(12), 3390–3393 (2014).
    [Crossref]
  32. J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
    [Crossref]
  33. J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
    [Crossref]
  34. S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–1293 (2008).
    [Crossref]
  35. M. Gu and D. Bird, “Three-dimensional optical-transfer-function analysis of fiber-optical two-photon fluorescence microscopy,” J. Opt. Soc. Am. A 20(5), 941 (2003).
    [Crossref]

2018 (3)

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

K. Xiong, S. Yang, X. Li, and D. Xing, “Autofocusing optical-resolution photoacoustic endoscopy,” Opt. Lett. 43(8), 1846–1849 (2018).
[Crossref]

2017 (6)

2016 (1)

2015 (7)

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

C. Chen, Y. Zhao, S. Yang, and D. Xing, “Mechanical characterization of intraluminal tissue with phase-resolved photoacoustic viscoelasticity endoscopy,” Biomed. Opt. Express 6(12), 4975–4980 (2015).
[Crossref]

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
[Crossref]

2014 (5)

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref]

N. Wu, S. Ye, Q. Ren, and C. Li, “High-resolution dual-modality photoacoustic ocular imaging,” Opt. Lett. 39(8), 2451–2454 (2014).
[Crossref]

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39(12), 3390–3393 (2014).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

2012 (3)

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

2011 (1)

2009 (1)

2008 (3)

2007 (1)

J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
[Crossref]

2006 (2)

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

2003 (1)

1969 (1)

J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[Crossref]

Aglyamov, S. R.

Amirian, J. H.

Ansari, R.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Austeng, A.

J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
[Crossref]

Bai, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Beard, P. C.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Bird, D.

Bo, E.

Bozhko, D.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

Buehler, A.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

Cai, D.

Cai, X.

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Cao, Y.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Capon, J.

J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[Crossref]

Chen, C.

Chen, R.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Chen, S.

Chen, S.-L.

Chen, W.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Chen, Z.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Cheng, J.-X.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Cui, Y.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

Danielli, A.

Desjardins, A. E.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Eakins, G.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Emelianov, S. Y.

Estrada, H.

Favazza, C.

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Ge, X.

Gong, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Gu, M.

Guo, H.

Guo, Z.

Hau, W.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

He, H.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

Holm, S.

J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
[Crossref]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Hu, Z.

Huang, C. H.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Huang, S.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Huang, Z.

Hui, J.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Jansen, K.

Ji, X.

X. Ji, K. Xiong, S. Yang, and D. Xing, “Intravascular confocal photoacoustic endoscope with dual-element ultrasonic transducer,” Opt. Express 23(7), 9130–9136 (2015).
[Crossref]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref]

Jian, X.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

Jiang, B.

Karpiouk, A. B.

Kim, C.-S.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Kirk Shung, K.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Kneipp, M.

Kole, A.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Lee, K.-S.

Li, C.

Li, G.

Li, J.

E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, and J. Li, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
[Crossref]

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Li, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Li, M.-L.

Li, W.

Li, X.

Li, Z.

Lin, R.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Litovsky, S. H.

Liu, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Liu, X.

Luo, Q.

Luo, Y.

Ma, T.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Maslov, K.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

Maslov, K. I.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Noordam, C.

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

Ntziachristos, V.

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Oosterhuis, J. W.

Park, S.

Piao, Z.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Rao, B.

Razansky, D.

Ren, Q.

Rolland, J. P.

Sethuraman, S.

Shi, J.

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

Shung, K. K.

Smalling, R. W.

Song, C.

Song, L.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

Sturek, M.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Synnevag, J. F.

J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
[Crossref]

Taruttis, A.

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Turner, J.

van Beusekom, H. M.

van der Steen, A. F. W.

van Soest, G.

Wang, G.

Wang, L.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

Wang, L. V.

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

Wang, N.

Wang, P.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Wang, X.

Wiedmann, M. T.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Wong, T. T. W.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Wu, N.

Xi, L.

Xia, D.

Xie, H.

Xing, D.

Xiong, K.

Yang, H. C.

Yang, J. M.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref]

Yang, J.-M.

Yang, S.

Yang, X.

Yao, J.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

Ye, S.

Yeh, C.-H.

Yu, G.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Yu, M.

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Zeng, C.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Zhang, E. Z.

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Zhang, H. F.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

Zhang, J.

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref]

Zhang, Y.

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Zhao, Y.

Zheng, H.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Zheng, J.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Zhou, Q.

J.-M. Yang, C. Li, R. Chen, B. Rao, J. Yao, C.-H. Yeh, A. Danielli, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Optical-resolution photoacoustic endomicroscopy in vivo,” Biomed. Opt. Express 6(3), 918–932 (2015).
[Crossref]

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref]

J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
[Crossref]

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref]

Zhu, X.

Zou, D.

Zou, J.

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Zou, X.

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Appl. Phys. Lett. (1)

Z. Piao, T. Ma, J. Li, M. T. Wiedmann, S. Huang, M. Yu, K. Kirk Shung, Q. Zhou, C.-S. Kim, and Z. Chen, “High speed intravascular photoacoustic imaging with fast optical parametric oscillator laser at 1.7 µm,” Appl. Phys. Lett. 107(8), 083701 (2015).
[Crossref]

Biomed. Opt. Express (2)

IEEE Trans. Med. Imag. (1)

H. He, A. Buehler, D. Bozhko, X. Jian, Y. Cui, and V. Ntziachristos, “Importance of ultrawide bandwidth for optoacoustic esophagus imaging,” IEEE Trans. Med. Imag. 37(5), 1162–1167 (2018).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (1)

J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54(8), 1606–1613 (2007).
[Crossref]

J. Am. Coll. Cardiol. (1)

J. Zhang, S. Yang, X. Ji, Q. Zhou, and D. Xing, “Characterization of lipid-rich aortic plaques by intravascular photoacoustic tomography: ex vivo and in vivo validation in a rabbit atherosclerosis model with histologic correlation,” J. Am. Coll. Cardiol. 64(4), 385–390 (2014).
[Crossref]

J. Biomed. Opt. (2)

J. Shi, L. Wang, C. Noordam, and L. V. Wang, “Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field,” J. Biomed. Opt. 20(11), 116002 (2015).
[Crossref]

J. M. Yang, C. Li, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Catheter-based photoacoustic endoscope,” J. Biomed. Opt. 19(6), 066001 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Light: Sci. Appl. (1)

R. Ansari, E. Z. Zhang, A. E. Desjardins, and P. C. Beard, “All-optical forward-viewing photoacoustic probe for high-resolution 3D endoscopy,” Light: Sci. Appl. 7(1), 75 (2018).
[Crossref]

Nat. Biotechnol. (1)

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[Crossref]

Nat. Med. (1)

J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo,” Nat. Med. 18(8), 1297–1302 (2012).
[Crossref]

Nat. Methods (1)

J. Yao, L. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action,” Nat. Methods 12(5), 407–410 (2015).
[Crossref]

Nat. Photonics (1)

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).
[Crossref]

Opt. Express (6)

Opt. Lett. (10)

K.-S. Lee and J. P. Rolland, “Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range,” Opt. Lett. 33(15), 1696–1698 (2008).
[Crossref]

K. Xiong, S. Yang, X. Li, and D. Xing, “Autofocusing optical-resolution photoacoustic endoscopy,” Opt. Lett. 43(8), 1846–1849 (2018).
[Crossref]

K. Jansen, A. F. W. van der Steen, H. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett. 36(5), 597–599 (2011).
[Crossref]

H. Guo, C. Song, H. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror,” Opt. Lett. 42(22), 4615–4618 (2017).
[Crossref]

M.-L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett. 31(4), 474–476 (2006).
[Crossref]

J. Turner, H. Estrada, M. Kneipp, and D. Razansky, “Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique,” Opt. Lett. 39(12), 3390–3393 (2014).
[Crossref]

S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12), 1291–1293 (2008).
[Crossref]

N. Wu, S. Ye, Q. Ren, and C. Li, “High-resolution dual-modality photoacoustic ocular imaging,” Opt. Lett. 39(8), 2451–2454 (2014).
[Crossref]

J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
[Crossref]

X. Zhu, Z. Huang, G. Wang, W. Li, D. Zou, and C. Li, “Ultrasonic detection based on polarization-dependent optical reflection,” Opt. Lett. 42(3), 439–441 (2017).
[Crossref]

Optica (1)

PLoS One (1)

X. Bai, X. Gong, W. Hau, R. Lin, J. Zheng, C. Liu, C. Zeng, X. Zou, H. Zheng, and L. Song, “Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter,” PLoS One 9(3), e92463 (2014).
[Crossref]

Proc. IEEE (1)

J. Capon, “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57(8), 1408–1418 (1969).
[Crossref]

Sci. Rep. (1)

J. Hui, Y. Cao, Y. Zhang, A. Kole, P. Wang, G. Yu, G. Eakins, M. Sturek, W. Chen, and J.-X. Cheng, “Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second,” Sci. Rep. 7(1), 1417 (2017).
[Crossref]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science 335(6075), 1458–1462 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic of the PAEM system. PBS, polarizing beam splitter; PD, photodiode; FC, fiber coupler; SMF, single-mode fiber; PAU, proximal actuation unit; FESR, fiber-electric slip ring; LM, linear motor; RM, rotate motor; AL, aspherical lens; RP, reflecting prism; UT, ultrasound transducer; AF, acoustic field; FOB, focused optical beam; DAS, data acquisition system. (b) Single FOB in the conventional PAEM system vs. synthetic FOB in the SDSOB-PAEM system. Scan.-Dom., scanning-domain; P1, P2, P3 transverse planes, at different positions, of the synthetic FOB. (c) Transverse spots of the synthetic FOB corresponding to P1, P2, P3, respectively.
Fig. 2.
Fig. 2. Working principles of the SDSOB technique. F1, F2, F3 the focuses of optical beams; Imag. targ., imaging target; OP, optical path.
Fig. 3.
Fig. 3. Numerical simulation results. (a)–(c) Transverse optical transfer functions (OTFs) in the focal plane and at the out-of-focus planes of Δ=1 mm, Δ=2 mm, respectively. (d)–(f) Transverse PSFs in the focal plane and at the out-of-focus planes of Δ=1 mm, Δ=2 mm. (g) Transverse spot size of a single FOB and a synthetic FOB versus the radial distance. (h) Transverse bandwidth of a single FOB and a synthetic FOB versus the radial distance. (i) and (j) Two-dimension PSFs of a single FOB and a synthetic FOB over the transverse (x) and radial (z) directions.
Fig. 4.
Fig. 4. Phantom imaging results. (a) and (d) Original and SDSOB PA B-scan images of the 7 µm thick carbon fibers at three different radial positions, respectively. P1 and P3 out the focal plane, P2 in the focal plane. (b) and (e) Enlarged views of the red dashed rectangles in (a) and (d), respectively. (c) and (f) Transverse pixel value of carbon fibers corresponding to (b) and (e), respectively. (g) and (h) Original and SDSOB PA radial maximum amplitude projection (RMAP) images of the resolution panel with 10-µm line width and 30-µm pitch at the out-of-focus plane of Δ=0.6 mm, respectively. (i) Pixel value on white dotted lines in (g) and (h).
Fig. 5.
Fig. 5. In vivo imaging results of rabbit rectal cross section. (a) and (d) In vivo original and SDSOB PA B-scan images of the rabbit rectum. L the fitted curve of the rectal mucosa. (b) and (e) Zoomed-in ROIs indicated by white dotted boxes in (a) and (d), respectively. (c) and (f) Pixel value on white dotted lines in (b) and (e), respectively.
Fig. 6.
Fig. 6. In vivo imaging results of rabbit rectal coronal plane. (a) and (b) Original and SDSOB radial maximum amplitude projection (RMAP) images with radial distance encoding, corresponding to R.D. = 8∼8.9 mm. (c) and (d) Original and SDSOB RMAP images with radial distance encoding, corresponding to R.D. = 8∼8.3 mm. FOV, field of view. (e) Number of junctions (N. O. J.) and number of nodes (N. O. N.) in (g)–(j). (f) Total vessel length (T. V. L.) and average vessel length (A. V. L.) in (g)–(j). (g)–(j) The vascular tree corresponding to i, ii, iii and iv in (a)–(d), respectively.

Tables (1)

Tables Icon

Table 1. Focusing parameters of the single FOB and synthetic FOB

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

h I S D S O B = W T H = i = 1 N w i h I i ,
min [ W T R W ] , subject to W α = 1 ,
R = E [ H H T ] = 1 N i = 1 N H H T .
W S D S O B = R 1 α α T R 1 α .
P = μ Γ I ,
P t a r g = N _ h I i P i ( t τ i ) ,
N _ h I i = h I i ( Δ , r ) k h I i ( Δ , r k ) ,
P S D S O B ( t ) = W S D S O B T P ( t ) = i = 1 N w i N _ h I i P i ( t τ i ) ,
N = L R ( θ , R f ) / ( δ R ) ,
p ( x , y ) = c i r c ( x 2 + y 2 / D ) ,

Metrics