Abstract

Stimulated Raman scattering (SRS) allows chemical identification of substances based on their third-order nonlinear vibrational susceptibility χ(3)(ω). In its standard single-frequency implementation, SRS can only access the imaginary part of χ(3)(ω). Here we introduce interferometric SRS (iSRS), which has the capability to measure both the real and the imaginary parts of the nonlinear susceptibility. With respect to a standard SRS setup, iSRS simply requires the insertion of a few optical elements in the Stokes(pump) beam pathway to generate an intrinsically phase-coherent local oscillator. While preserving the acquisition speed and the simplicity of single-frequency SRS, iSRS considerably increases its information content by providing access to the vibrational phase, which allows one to distinguish overlapping species in congested spectra and is more robust with respect to noise.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme

Dae Sik Choi, Chang Ho Kim, Taegon Lee, Sanghee Nah, Hanju Rhee, and Minhaeng Cho
Opt. Express 27(16) 23558-23575 (2019)

Amplitude and polarization modulated hyperspectral Stimulated Raman Scattering Microscopy

Marco Andreana, Marie-Andrée Houle, Douglas J. Moffatt, Andrew Ridsdale, Edlef Buettner, François Légaré, and Albert Stolow
Opt. Express 23(22) 28119-28131 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, FL, 2013).
  2. J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
    [Crossref] [PubMed]
  3. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  4. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  5. M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
    [Crossref] [PubMed]
  6. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  7. M. S. Alshaykh, C.-S. Liao, O. E. Sandoval, G. Gitzinger, N. Forget, D. E. Leaird, J.-X. Cheng, and A. M. Weiner, “High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines,” Opt. Lett. 42(8), 1548–1551 (2017).
    [Crossref] [PubMed]
  8. Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
    [Crossref] [PubMed]
  9. E. M. Vartiainen, “Phase retrieval approach for coherent anti-Stokes Raman scattering spectrum analysis,” J. Opt. Soc. Am. B 9(8), 1209–1214 (1992).
    [Crossref]
  10. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14(8), 3622–3630 (2006).
    [Crossref] [PubMed]
  11. D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
    [Crossref]
  12. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  13. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  14. C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
    [Crossref] [PubMed]
  15. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [Crossref] [PubMed]
  16. M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
    [Crossref] [PubMed]
  17. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
    [Crossref] [PubMed]
  18. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
    [Crossref] [PubMed]
  19. S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).
  20. A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Full characterization of the third-order nonlinear susceptibility using a single-beam coherent anti-Stokes Raman scattering setup,” Opt. Lett. 37(20), 4239–4241 (2012).
    [Crossref] [PubMed]
  21. P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
    [Crossref] [PubMed]
  22. F. E. Robles, M. C. Fischer, and W. S. Warren, “Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography,” Opt. Express 24(1), 485–498 (2016).
    [Crossref] [PubMed]
  23. F. E. Robles, K. C. Zhou, M. C. Fischer, and W. S. Warren, “Stimulated Raman scattering spectroscopic optical coherence tomography,” Optica 4(2), 243–246 (2017).
    [Crossref] [PubMed]
  24. V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
    [Crossref]
  25. M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
    [Crossref] [PubMed]
  26. M. A. van Dijk, M. Lippitz, D. Stolwijk, and M. Orrit, “A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles,” Opt. Express 15(5), 2273–2287 (2007).
    [Crossref] [PubMed]
  27. F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
    [Crossref] [PubMed]
  28. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  29. M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
    [Crossref] [PubMed]
  30. A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
    [Crossref] [PubMed]
  31. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
    [Crossref]

2018 (2)

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

2017 (4)

F. E. Robles, K. C. Zhou, M. C. Fischer, and W. S. Warren, “Stimulated Raman scattering spectroscopic optical coherence tomography,” Optica 4(2), 243–246 (2017).
[Crossref] [PubMed]

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

M. S. Alshaykh, C.-S. Liao, O. E. Sandoval, G. Gitzinger, N. Forget, D. E. Leaird, J.-X. Cheng, and A. M. Weiner, “High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines,” Opt. Lett. 42(8), 1548–1551 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (1)

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

2014 (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

2012 (3)

2010 (3)

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (2)

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

2005 (3)

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

2004 (1)

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1992 (1)

Alshaykh, M. S.

Berto, P.

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

Bon, P.

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

Bonn, M.

Brida, D.

Buckup, T.

Camp, C. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Caster, A. G.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).

Cerullo, G.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

Cheng, J.-X.

Cicerone, M. T.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Coluccelli, N.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Crisafi, F.

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

De la Cadena, A.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Evans, C. L.

Ferrari, A. C.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

Fischer, M. C.

Forget, N.

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Gachet, D.

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

Gambetta, A.

Garbacik, E. T.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

Gitzinger, G.

Grancini, G.

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Herek, J. L.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

Hight Walker, A. R.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Jurna, M.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Korterik, J. P.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
[Crossref] [PubMed]

Kumar, V.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Leaird, D. E.

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Leone, S. R.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).

Liao, C.-S.

Lim, S.-H.

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Lippitz, M.

M. A. van Dijk, M. Lippitz, D. Stolwijk, and M. Orrit, “A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles,” Opt. Express 15(5), 2273–2287 (2007).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Liu, Y.

Lombardi, L.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Manzoni, C.

Marangoni, M.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Monneret, S.

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

Motzkus, M.

Müller, M.

Offerhaus, H. L.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
[Crossref] [PubMed]

Oriana, A.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

Orrit, M.

M. A. van Dijk, M. Lippitz, D. Stolwijk, and M. Orrit, “A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles,” Opt. Express 15(5), 2273–2287 (2007).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Otto, C.

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Background free CARS imaging by phase sensitive heterodyne CARS,” Opt. Express 16(20), 15863–15869 (2008).
[Crossref] [PubMed]

M. Jurna, J. P. Korterik, C. Otto, and H. L. Offerhaus, “Shot noise limited heterodyne detection of CARS signals,” Opt. Express 15(23), 15207–15213 (2007).
[Crossref] [PubMed]

Perri, A.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

Polli, D.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

Potma, E. O.

Preda, F.

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Ramponi, R.

Réhault, J.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

Rehbinder, J.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Rigneault, H.

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

Rinia, H. A.

Robles, F. E.

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sandoval, O. E.

Scopigno, T.

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stolwijk, D.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Valensise, C. M.

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

van Dijk, M. A.

M. A. van Dijk, M. Lippitz, D. Stolwijk, and M. Orrit, “A common-path interferometer for time-resolved and shot-noise-limited detection of single nanoparticles,” Opt. Express 15(5), 2273–2287 (2007).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

Vartiainen, E. M.

Warren, W. S.

Weiner, A. M.

Wipfler, A.

Xie, X. S.

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Zhou, K. C.

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Anal. Chem. (1)

M. Jurna, E. T. Garbacik, J. P. Korterik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Visualizing resonances in the complex plane with vibrational phase contrast coherent anti-Stokes Raman scattering,” Anal. Chem. 82(18), 7656–7659 (2010).
[Crossref] [PubMed]

APL Photonics (1)

V. Kumar, A. De la Cadena, A. Perri, F. Preda, N. Coluccelli, G. Cerullo, and D. Polli, “Complex vibrational susceptibility by interferometric Fourier transform stimulated Raman scattering,” APL Photonics 3(9), 092403 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quantum Electron. 23(3), 88–96 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

D. Polli, V. Kumar, C. M. Valensise, M. Marangoni, and G. Cerullo, “Broadband Coherent Raman Scattering Microscopy,” Laser Photonics Rev. 12(9), 1800020 (2018).
[Crossref]

Nat. Photonics (1)

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (8)

A. Wipfler, J. Rehbinder, T. Buckup, and M. Motzkus, “Full characterization of the third-order nonlinear susceptibility using a single-beam coherent anti-Stokes Raman scattering setup,” Opt. Lett. 37(20), 4239–4241 (2012).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

M. Marangoni, A. Gambetta, C. Manzoni, V. Kumar, R. Ramponi, and G. Cerullo, “Fiber-format CARS spectroscopy by spectral compression of femtosecond pulses from a single laser oscillator,” Opt. Lett. 34(21), 3262–3264 (2009).
[Crossref] [PubMed]

A. Gambetta, V. Kumar, G. Grancini, D. Polli, R. Ramponi, G. Cerullo, and M. Marangoni, “Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator,” Opt. Lett. 35(2), 226–228 (2010).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-stokes raman scattering spectral interferometry: determination of the real and imaginary components of nonlinear susceptibility χ(3) for vibrational microscopy,” Opt. Lett. 29(24), 2923–2925 (2004).
[Crossref] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[Crossref] [PubMed]

M. S. Alshaykh, C.-S. Liao, O. E. Sandoval, G. Gitzinger, N. Forget, D. E. Leaird, J.-X. Cheng, and A. M. Weiner, “High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines,” Opt. Lett. 42(8), 1548–1551 (2017).
[Crossref] [PubMed]

Y. Liu, Y. J. Lee, and M. T. Cicerone, “Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform,” Opt. Lett. 34(9), 1363–1365 (2009).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. A (1)

S.-H. Lim, A. G. Caster, and S. R. Leone, “Single-pulse phase-control interferometric coherent anti-Stokes Raman scattering spectroscopy,” Phys. Rev. A 72, 041803 (2005).

Phys. Rev. Lett. (4)

P. Berto, D. Gachet, P. Bon, S. Monneret, and H. Rigneault, “Wide-field vibrational phase imaging,” Phys. Rev. Lett. 109(9), 093902 (2012).
[Crossref] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, “Detection of acoustic oscillations of single gold nanospheres by time-resolved interferometry,” Phys. Rev. Lett. 95(26), 267406 (2005).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103(4), 043905 (2009).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

F. Crisafi, V. Kumar, T. Scopigno, M. Marangoni, G. Cerullo, and D. Polli, “In-line balanced detection stimulated Raman scattering microscopy,” Sci. Rep. 7(1), 10745 (2017).
[Crossref] [PubMed]

Science (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350(6264), aaa8870 (2015).
[Crossref] [PubMed]

Other (1)

J.-X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, FL, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup for iSRS. HWP: Half Wave Plate; BP: birefringent plate; DM: dichroic mirror; SRG: Stimulated Raman Gain; LPF: Long-pass Filter; BW: birefringent wedges; QWP: Quarter Wave Plate; LP: Linear Polarizer; PD: Photodiode.
Fig. 2
Fig. 2 Computed (panels (a) and (c)) and measured (panels (b) and (d)) I S0 (θ,ϕ) and I iSRS (θ,ϕ) (see text). In panels (c) and (d) cyan green and blue curves are zero contour levels computed for β(θ,ϕ), γ(θ,ϕ) and I iSRS (θ,ϕ), respectively; “A” and “B” spots are the working points for measurements of Fig. 3 and Fig. 4.
Fig. 3
Fig. 3 Measured real (green) and imaginary (blue) SRS spectra of different solvents. Dashed red/violet lines represent fits performed with two or three terms of the sum in Eq. (1). Orange dashed lines highlight to the non-resonant background contribution.
Fig. 4
Fig. 4 Polystyrene (PS) and polymethyl methacrylate (PMMA) spheres imaged at 2990 cm−1 Raman Shift. (a-b) are images from imaginary and real response, respectively; (c) is the phase image produced combining (a) and (b); (d) data points scattered in the complex plane.
Fig. 5
Fig. 5 Reference frame for interferometer model. Input electric field in absence of the pump beam is represented by the red arrow, reported together with its projections onto the reference x-y axes (dashed arrows). Purple axes represent the fast axis (F.A.) and slow axis (S.A.) directions of the QWP, while the green arrow is the transmission axis (T.A.) of the polarizer. The orange arrow represents the electric field modified by the SRG signal due to interaction of the pump pulse, and the ellipse traces its trajectory on the x-y plane for different values of θ and ϕ. The tiny SRG signal on the vertically polarized component is exaggerated in scale for clarity.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

χ R (3) (ω)= k=1 n A k ω Ω k +i Γ k ,
I CARS = | E CARS (ω) | 2 | χ R (3) | 2 + ( χ NR (3) ) 2 +2 χ NR (3) Re( χ R (3) ),
I iCARS (ω) | E CARS + E LO e iΔϕ | 2 | E LO | 2 +2 E LO { Re[ E CARS ]cos(Δϕ) + Im[ E CARS ]sin(Δϕ) },
I S0 (θ,ϕ)[ 2sin(2θ)+sin(2(θ2ϕ)) ],
Δ I S (θ,ϕ)= I S I S0 β(θ,ϕ)Re( χ (3) )+γ(θ,ϕ)Im( χ (3) ),
{ β(θ,ϕ)=2sin[ 2(θϕ) ] γ(θ,ϕ)=2sin(2θ)cos(2θ) +sin[ 2(θ2ϕ) ]cos[ 2(θ2ϕ) ].
I iSRS =Δ I S (θ,ϕ)/ I S0 .
E 0 = 1 2 ( 1 1 ).
LP(θ)= 1 2 ( 1+cos(2θ) sin(2θ) sin(2θ) 1cos(2θ) )
QWP(ϕ)= 1 2 ( 1+icos(2ϕ) isin(2ϕ) isin(2ϕ) 1icos(2ϕ) )
I S0 (θ,ϕ)= | LP(θ)QWP(ϕ) E 0 | 2 = 1 4 (1sin(2θ)+sin(2(θ2ϕ))
E = 1 2 ( 1 1+δ ),
I S (θ,ϕ,δ)= | LP(θ)QWP(ϕ)E | 2 = = 1 4 [ 2sin(2θ)+sin(2(θ2ϕ)) ]+ 1 2 [ sin(2(θϕ)) ]Im(δ) + 1 4 [ 2cos(2θ)cos(2(θ2ϕ)) sin(2θ)+sin(2(θ2ϕ)) ]Re(δ) + 1 8 [ 2cos(2θ)cos(2(θ2ϕ)) ] | δ | 2 .
Δ I S (θ,ϕ,δ)= I S (θ,ϕ,δ) I S0 (θ,ϕ),
Δ I S (θ,ϕ,δ)= 1 2 [sin(2(θϕ))]Im(δ) + 1 4 [2cos(2θ)cos(2(θ2ϕ))sin(2θ)+sin(2(θ2ϕ))]Re(δ)
Δ I S (θ,ϕ, χ (3) ) 1 2 [sin(2(θϕ))]Re( χ (3) ) + 1 4 [2cos(2θ)cos(2(θ2ϕ))sin(2θ)+sin(2(θ2ϕ))]Im( χ (3) )
Δ I S β(θ,ϕ)Re( χ (3) )+γ(θ,ϕ)Im( χ (3) )

Metrics