Abstract

Optical transmitters typically require electrical pre-amplification using driver amplifiers to optimize the optical modulation depth. To enhance the detection sensitivity and optimize the overall link budget, equalization is required to compensate for undesired signal distortion induced by the transmitter. In this paper, we propose and demonstrate a novel optical equalization scheme using a silicon photonic micro-ring resonator (MRR)-based switching circuit for mitigating driver-amplifier-induced pulsewidth distortion. The switching circuit simultaneously functions as a spatial optical switch as well as a two-stage optical bandpass filter for optical equalization. The experimental results indicate a 4.5-dB detection sensitivity enhancement at a data rate of 12.5 Gbits/s. The proposed approach is robust to different levels of pulsewidth distortion without additional signal processing, and has possibilities to support higher data rates by adjusting the MRR parameters.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dimensioning of 112G Optical-Packet-Switching-Based Interconnects for Energy-Efficient Data Centers

Bárbara Dumas Feris, Philippe Gravey, Pascal Morel, Marie-Laure Moulinard, Michel Morvan, and Ammar Sharaiha
J. Opt. Commun. Netw. 9(4) B124-B136 (2017)

Scaling silicon photonic switch fabrics for data center interconnection networks

Dessislava Nikolova, Sébastien Rumley, David Calhoun, Qi Li, Robert Hendry, Payman Samadi, and Keren Bergman
Opt. Express 23(2) 1159-1175 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
    [Crossref]
  2. B. Abali, R. J. Eickemeyer, H. Franke, C. S. Li, and M. A. Taubenblatt, “Disaggregated and optically interconnected memory: when will it be cost effective?” arXiv:1503.01416 (2015).
  3. Y. Yan, G. M. Saridis, Y. Shu, B. R. Rofoee, S. Yan, M. Arslan, T. Bradley, N. V. Wheeler, N. H. L. Wong, F. Poletti, M. N. Petrovich, D. J. Richardson, S. Poole, G. Zervas, and D. Simeonidou, “All-optical programmable disaggregated data center network realized by FPGA-based switch and interface card,” J. Lightwave Technol. 34(8), 1925–1932 (2016).
    [Crossref]
  4. Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
    [Crossref] [PubMed]
  5. D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
    [Crossref]
  6. K. L. Deng, R. J. Runser, P. Toliver, I. Glesk, and P. R. Prucnal, “A highly-scalable, rapidly-reconfigurable, multicasting-capable, 100 Gb/s photonic switched interconnect based upon OTDM technology,” J. Lightwave Technol. 18(12), 1892–1904 (2000).
    [Crossref]
  7. J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and Optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
    [Crossref]
  8. J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  9. N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J. P. Elbers, J. J. V. Olmos, and I. T. Monroy, “Evaluation of Real-Time 8 × 56.25 Gb/s (400G) PAM-4 for Inter-Data Center Application Over 80 km of SSMF at 1550 nm,” J. Lightwave Technol. 35(4), 955–962 (2017).
    [Crossref]
  10. R. Rodes, M. Mueller, B. Li, J. Estaran, J. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. Larsen, M. Amann, and I. Monroy, “High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31(4), 689–695 (2013).
    [Crossref]
  11. X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
    [Crossref] [PubMed]
  12. H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
    [Crossref]
  13. B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, 2003), Chap.10.
  14. A. R. Mohamed, M. F. Ibrahim, and F. Farag, “Input offset cancellation trimming technique for operational amplifiers,” in Proceedings of the Saudi International Conference on Electronics, Communications, and Photonics (SIECPC, 2013), pp. 1–5.
    [Crossref]
  15. M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
    [Crossref]
  16. Q. Cheng, L. Y. Dai, N. C. Abrams, Y. H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155–161 (2019).
    [Crossref]
  17. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  18. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
    [Crossref] [PubMed]
  19. H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
    [Crossref] [PubMed]
  20. M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform,” J. Lightwave Technol. 36(3), 773–788 (2018).
    [Crossref]
  21. R. N. Mutagi, “Pseudo noise sequences for engineers,” Electron. Commun. Eng. 8(2), 79–87 (1996).
    [Crossref]
  22. J. Ruzbarsky, J. Turan, and L. Ovsenik, “Effects act on transmitted signal in a fully optical fiber WDM systems,” in Proceedings of the IEEE 13th International Scientific Conference onInformatics (INFORMATICS, 2015), pp. 217–221.
    [Crossref]
  23. T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
    [Crossref] [PubMed]
  24. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  25. A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings of Advanced Photonics Congress (IPR, Networks, NOMA, PS, Sensors, SPPCom, 2017), PTh1D.3.
    [Crossref]
  26. Q. Zhu and et al.., “Automated wavelength alignment in a 4 × 4 silicon thermooptic switch based on dual-ring resonators,” IEEE Photonics J. 10, 1–12 (2018).
  27. J. L. Wei, C. Sánchez, E. Hugues-Salas, P. S. Spencer, and J. M. Tang, “Wavelength-offset filtering in optical OFDM IMDD systems using directly modulated DFB lasers,” J. Lightwave Technol. 29(18), 2861–2870 (2011).
    [Crossref]
  28. Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
    [Crossref]
  29. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
    [Crossref]
  30. L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13(13), 5106–5115 (2005).
    [Crossref] [PubMed]

2019 (2)

Q. Cheng, L. Y. Dai, N. C. Abrams, Y. H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

2018 (6)

2017 (1)

2016 (2)

2015 (2)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (2)

2008 (1)

2005 (1)

2000 (1)

1997 (1)

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

1996 (1)

R. N. Mutagi, “Pseudo noise sequences for engineers,” Electron. Commun. Eng. 8(2), 79–87 (1996).
[Crossref]

1992 (1)

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

Abrams, N.

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

Abrams, N. C.

Alon, E.

Amann, M.

Amberg, P.

Arslan, M.

Asghari, M.

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bahadori, M.

Ban, Y.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Bauwelinck, J.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Bergman, K.

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

Q. Cheng, L. Y. Dai, N. C. Abrams, Y. H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform,” J. Lightwave Technol. 36(3), 773–788 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref] [PubMed]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Biberman, A.

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Blumenthal, D.

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Bradley, T.

Caverley, M.

Chan, J.

Chen, K. Y.

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

Chen, L.

Cheng, Q.

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

Q. Cheng, L. Y. Dai, N. C. Abrams, Y. H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155–161 (2019).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform,” J. Lightwave Technol. 36(3), 773–788 (2018).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5(11), 1354–1370 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref] [PubMed]

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Chrostowski, L.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Cunningham, D. G.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and Optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Cunningham, J. E.

Dai, L. Y.

Dai, T.

Dayringer, M.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

DeHeyn, P.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Deng, K. L.

Dochhan, A.

Dong, P.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eiselt, M. H.

Eiselt, N.

Elbers, J. P.

Estaran, J.

Feng, D.

Feuerstein, R. J.

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

Gainsley, J.

Gazman, A.

Glesk, I.

Glick, M.

Griesser, H.

Gruendl, T.

Guillén-Torres, M. Á.

Ho, R.

Hu, R.

Huang, Y.

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

Hugues-Salas, E.

Hung, Y. H.

Q. Cheng, L. Y. Dai, N. C. Abrams, Y. H. Hung, P. E. Morrissey, M. Glick, P. O’Brien, and K. Bergman, “Ultralow-crosstalk, strictly non-blocking microring-based optical switch,” Photon. Res. 7(2), 155–161 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

Ingham, J. D.

Jaeger, N. A. F.

Janosik, N.

Jayatilleka, H.

Jensen, J.

Jiang, X.

Krishnamoorthy, A. V.

Larsen, K.

Lee, B. G.

Lexau, J.

Li, B.

Li, G.

Li, J.

Li, Y.

Lipson, M.

Liu, F.

Logan, R. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Luo, Y.

Ma, J.

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

McGeehan, J.

Mekis, A.

Moghadam, H. F.

Monroy, I.

Monroy, I. T.

Morrissey, P. E.

Morton, P. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Mueller, M.

Murray, K.

Mutagi, R. N.

R. N. Mutagi, “Pseudo noise sequences for engineers,” Electron. Commun. Eng. 8(2), 79–87 (1996).
[Crossref]

Neumeyr, C.

Nikdast, M.

O’Brien, P.

Olmos, J. J. V.

Ortsiefer, M.

Ossieur, P.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Padmaraju, K.

Pantouvaki, M.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Paraschis, L.

Patil, D.

Penty, R. V.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and Optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Petrovich, M. N.

Pinguet, T.

Poletti, F.

Polster, R.

Poole, S.

Prucnal, P. R.

Raj, K.

Ramon, H.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Richardson, D. J.

Rodes, R.

Rofoee, B. R.

Rosskopf, J.

Rumley, S.

Runser, R. J.

Sánchez, C.

Saridis, G. M.

Sauer, J. R.

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Shekhar, S.

Shen, A.

Sherwood-Droz, N.

Shtengel, G. E.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Shu, Y.

Shubin, I.

Simeonidou, D.

Soenen, W.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Spencer, P. S.

Tanbun-Ek, T.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Tang, J. M.

Thacker, H.

Toliver, P.

Tzeng, L. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

VanCampenhout, J.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Vanhoecke, M.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Verbist, J.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Wang, G.

Wang, H.

Wang, Y.

Wei, J.

Wei, J. L.

Wheeler, N. V.

White, I. H.

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and Optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

Willner, A. E.

Wong, N. H. L.

Yadvish, R. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

Yan, L. S.

Yan, S.

Yan, Y.

Yang, J.

Yao, J.

Yin, X.

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

Yu, C.

Zervas, G.

Zhang, B.

Zheng, X.

Zhu, Q.

Q. Zhu and et al.., “Automated wavelength alignment in a 4 × 4 silicon thermooptic switch based on dual-ring resonators,” IEEE Photonics J. 10, 1–12 (2018).

Zhu, Z.

Electron. Commun. Eng. (1)

R. N. Mutagi, “Pseudo noise sequences for engineers,” Electron. Commun. Eng. 8(2), 79–87 (1996).
[Crossref]

Electron. Lett. (1)

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Logan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 um DFB laser,” Electron. Lett. 33(4), 310–311 (1997).
[Crossref]

IEEE Commun. Mag. (1)

J. L. Wei, Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, “400 Gigabit Ethernet using advanced modulation formats: performance, complexity, and power dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Cheng, M. Bahadori, Y. H. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon clos switchfabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25(5), 3600111 (2019).
[Crossref]

IEEE Photonics J. (1)

Q. Zhu and et al.., “Automated wavelength alignment in a 4 × 4 silicon thermooptic switch based on dual-ring resonators,” IEEE Photonics J. 10, 1–12 (2018).

IEEE Photonics Technol. Lett. (2)

H. Ramon, M. Vanhoecke, J. Verbist, W. Soenen, P. DeHeyn, Y. Ban, M. Pantouvaki, J. VanCampenhout, P. Ossieur, X. Yin, and J. Bauwelinck, “Low-power 56Gb/s NRZ microring modulator driver in 28nm FDSOI CMOS,” IEEE Photonics Technol. Lett. 30(5), 467–470 (2018).
[Crossref]

D. Blumenthal, K. Y. Chen, J. Ma, R. J. Feuerstein, and J. R. Sauer, “Demonstration of a deflection routing 2×2 photonic switch for computer interconnects,” IEEE Photonics Technol. Lett. 4(2), 169–173 (1992).
[Crossref]

J. Lightwave Technol. (8)

J. L. Wei, C. Sánchez, E. Hugues-Salas, P. S. Spencer, and J. M. Tang, “Wavelength-offset filtering in optical OFDM IMDD systems using directly modulated DFB lasers,” J. Lightwave Technol. 29(18), 2861–2870 (2011).
[Crossref]

J. L. Wei, J. D. Ingham, D. G. Cunningham, R. V. Penty, and I. H. White, “Performance and power dissipation comparisons between 28 Gb/s NRZ, PAM, CAP and Optical OFDM systems for data communication applications,” J. Lightwave Technol. 30(20), 3273–3280 (2012).
[Crossref]

K. L. Deng, R. J. Runser, P. Toliver, I. Glesk, and P. R. Prucnal, “A highly-scalable, rapidly-reconfigurable, multicasting-capable, 100 Gb/s photonic switched interconnect based upon OTDM technology,” J. Lightwave Technol. 18(12), 1892–1904 (2000).
[Crossref]

R. Rodes, M. Mueller, B. Li, J. Estaran, J. Jensen, T. Gruendl, M. Ortsiefer, C. Neumeyr, J. Rosskopf, K. Larsen, M. Amann, and I. Monroy, “High-speed 1550 nm VCSEL data transmission link employing 25 GBd 4-PAM modulation and hard decision forward error correction,” J. Lightwave Technol. 31(4), 689–695 (2013).
[Crossref]

Y. Yan, G. M. Saridis, Y. Shu, B. R. Rofoee, S. Yan, M. Arslan, T. Bradley, N. V. Wheeler, N. H. L. Wong, F. Poletti, M. N. Petrovich, D. J. Richardson, S. Poole, G. Zervas, and D. Simeonidou, “All-optical programmable disaggregated data center network realized by FPGA-based switch and interface card,” J. Lightwave Technol. 34(8), 1925–1932 (2016).
[Crossref]

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J. P. Elbers, J. J. V. Olmos, and I. T. Monroy, “Evaluation of Real-Time 8 × 56.25 Gb/s (400G) PAM-4 for Inter-Data Center Application Over 80 km of SSMF at 1550 nm,” J. Lightwave Technol. 35(4), 955–962 (2017).
[Crossref]

M. Bahadori, A. Gazman, N. Janosik, S. Rumley, Z. Zhu, R. Polster, Q. Cheng, and K. Bergman, “Thermal Rectification of Integrated Microheaters for Microring Resonators in Silicon Photonics Platform,” J. Lightwave Technol. 36(3), 773–788 (2018).
[Crossref]

M. Bahadori, M. Nikdast, S. Rumley, L. Y. Dai, N. Janosik, T. Van Vaerenbergh, A. Gazman, Q. Cheng, R. Polster, and K. Bergman, “Design space exploration of microring resonators in silicon photonic interconnects: impact of the ring curvature,” J. Lightwave Technol. 36(13), 2767–2782 (2018).
[Crossref]

Laser Photonics Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Opt. Express (6)

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Thermal stabilization of a microring modulator using feedback control,” Opt. Express 20(27), 27999–28008 (2012).
[Crossref] [PubMed]

L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13(13), 5106–5115 (2005).
[Crossref] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J. Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer, J. Gainsley, H. F. Moghadam, E. Alon, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “Ultra-efficient 10 Gb/s hybrid integrated silicon photonic transmitter and receiver,” Opt. Express 19(6), 5172–5186 (2011).
[Crossref] [PubMed]

Q. Cheng, S. Rumley, M. Bahadori, and K. Bergman, “Photonic switching in high performance datacenters [Invited],” Opt. Express 26(12), 16022–16043 (2018).
[Crossref] [PubMed]

H. Jayatilleka, K. Murray, M. Á. Guillén-Torres, M. Caverley, R. Hu, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters,” Opt. Express 23(19), 25084–25097 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Other (5)

B. Abali, R. J. Eickemeyer, H. Franke, C. S. Li, and M. A. Taubenblatt, “Disaggregated and optically interconnected memory: when will it be cost effective?” arXiv:1503.01416 (2015).

J. Ruzbarsky, J. Turan, and L. Ovsenik, “Effects act on transmitted signal in a fully optical fiber WDM systems,” in Proceedings of the IEEE 13th International Scientific Conference onInformatics (INFORMATICS, 2015), pp. 217–221.
[Crossref]

A. S. P. Khope, A. M. Netherton, T. Hirokawa, N. Volet, E. J. Stanton, C. Schow, R. Helkey, A. A. M. Saleh, J. E. Bowers, and R. C. Alferness, “Elastic WDM optoelectronic crossbar switch with on-chip wavelength control,” in Proceedings of Advanced Photonics Congress (IPR, Networks, NOMA, PS, Sensors, SPPCom, 2017), PTh1D.3.
[Crossref]

B. Razavi, Design of Integrated Circuits for Optical Communications (McGraw-Hill, 2003), Chap.10.

A. R. Mohamed, M. F. Ibrahim, and F. Farag, “Input offset cancellation trimming technique for operational amplifiers,” in Proceedings of the Saudi International Conference on Electronics, Communications, and Photonics (SIECPC, 2013), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Operation principle.(a) eye-diagram of electrical data; (b) eye-diagram of distorted electrical data; (c) input optical signals; (d) frequency response of the MRR-Based Switch; (e) output optical signals; (f) eye-diagram of output optical signals; AMP, driver amplifier; TLD, tunable laser diode; EM external modulator; PD photodiode; OSC, oscilloscope.
Fig. 2
Fig. 2 (a) Schematic of the 4 × 4 MRR-based switch-and-select switching fabric. (b) Photo of the packaged switching circuit. (c) Transmission loss in terms of MRR DC-Bias. Note that the upper x-axis and the lower x-axis are offset to 1.12 Volt and 0.86 Volt, respectively.(d) Normalized transmission spectra of a set of representative paths. Note that the edge coupling loss of the switching circuit is 11 dB [16].
Fig. 3
Fig. 3 Schematic of the experimental apparatus. AMP, driver amplifier; TLD, tunable laser diode; EM, external modulator; PC, polarization controller; PA, power adjuster; OF optical filter; FC, fiber coupler, PD, photodiode; OSC, oscilloscope; OSA, optical spectrum analyzer; BERT, bit-error-rate tester.
Fig. 4
Fig. 4 Optical spectra of input NRZ-encoded optical signals with 50% ECP (a), 73% ECP (b), and output NRZ-encoded optical signals (c), respectively. The x-axes are offset to the input optical carrier frequency. When measuring the optical spectra, a resolution of 10 MHz is used. (d), (e), (f) Eye-diagrams for (a), (b), and (c), respectively.
Fig. 5
Fig. 5 BER in terms of received optical power. Red circles and red squares, input NRZ-encoded optical signals with 73% ECP and 50%, respectively; blue circles, output NRZ-encoded optical signals with 59% ECP.
Fig. 6
Fig. 6 (a) Output ECP in terms of input ECP. (b) Received optical power in photodiode in terms of input ECP. The red circles and blue circles are input NRZ-encoded optical signals and output NRZ-encoded optical signals, respectively.
Fig. 7
Fig. 7 Power penalty in terms of data rate. Note that the input ECP is kept at 73%.
Fig. 8
Fig. 8 (a) Mappings of the MRR 3-dB passband (a) and MRR optical power loss (b) as a function of coupling gap size of MRR and ring radius of MRR. Each contour line in (a) indicates a constant 3-dB passband, as marked, in GHz. Each contour line in (b) indicates a constant optical power loss, as marked, in dB.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(t)=| A(t) | e iP(t)
D(t)=g(| A(t) |) e i(P(t)+f(| A(t) |))
S in (t)=(1+D(t))(mcos(2π f c t))
F(f) F 0 1+ ( 2 Δ f 3dB (f f res )) 2
S ˜ out (f) S ˜ in (f)F(f) e (i β (2π(f f c )) 2 L 2 )
ECP= Crossing Level - Zero Level One Level - Zero Level ×100%

Metrics