Abstract

A common-path interferometer for the real-time measurement of the liquid-crystal (LC) optic-axis angle and effective refractive index distribution is proposed. This method involves adding a polarizer and polarization camera to a general optical microscope. This requires only single-exposure imaging without changing any optical elements, and greatly simplifies the measurement process and system. In addition, the measurement results are unaffected by light-source power fluctuations or a non-uniform spatial distribution. Therefore, this method is suitable for measuring the LC optic-axis angle and effective refractive index of electrically controlled LC devices. Finally, the feasibility and validity of the proposed method are verified by simulation and experimentation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interference-free and single exposure to generate continuous cycloidal alignment for large-area liquid crystal devices

Da Chen, Huijie Zhao, Kexin Yan, Dong Xu, Qi Guo, Linghao Sun, Fan Wu, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Express 27(20) 29332-29339 (2019)

Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices

Julian A. J. Fells, Steve J. Elston, Martin J. Booth, and Stephen M. Morris
Opt. Express 26(5) 6126-6142 (2018)

Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response

Kexin Yan, Qi Guo, Fan Wu, Jiatong Sun, Huijie Zhao, and Hoi-Sing Kwok
Opt. Express 27(7) 9925-9932 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
    [Crossref] [PubMed]
  2. J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
    [Crossref]
  3. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Vol. 23.
  4. H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
    [Crossref]
  5. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure. Appl. Opt. 2(3), 216–222 (2000).
  6. E. Chen, H. Xie, J. Huang, H. Miu, G. Shao, Y. Li, T. Guo, S. Xu, and Y. Ye, “Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays,” Opt. Express 26(3), 3466–3482 (2018).
    [Crossref] [PubMed]
  7. H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
    [Crossref] [PubMed]
  8. H. Chen, R. Zhu, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer,” Opt. Express 25(1), 102–111 (2017).
    [Crossref] [PubMed]
  9. H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
    [Crossref] [PubMed]
  10. X. F. Xiao and D. G. Voelz, “Liquid crystal variable retarder modeling of incident angle response with experimental verification,” Opt. Eng. 47(5), 525–534 (2008).
    [Crossref]
  11. S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).
  12. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [Crossref]
  13. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39(35), 6545–6555 (2000).
    [Crossref] [PubMed]
  14. Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
    [Crossref] [PubMed]
  15. Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
    [Crossref]
  16. H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
    [Crossref] [PubMed]
  17. D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
    [Crossref]
  18. M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
    [Crossref]
  19. J. S. Gwag, J. Yi, and J. H. Kwon, “Determination of actual surface azimuthal anchoring strength using a wedge-shaped liquid crystal cell,” Opt. Lett. 35(4), 456–458 (2010).
    [Crossref] [PubMed]
  20. S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
    [Crossref]
  21. S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
    [Crossref]
  22. D. M. Cai, N. Ling, and W. H. Jiang, “Performance of liquid crystal spatial light modulator (LC-SLM) as a wave-front corrector for atmospheric turbulence compensation,” in Free-Space Laser Communication Technologies XIX and Atmospheric Propagation of Electromagnetic Waves, S. Mecherle and O. Korotkova, eds. (2007).
  23. N. Konforti, E. Marom, and S. T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Lett. 13(3), 251–253 (1988).
    [Crossref] [PubMed]
  24. O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
    [Crossref]
  25. J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
    [Crossref] [PubMed]
  26. C. Ramirez, B. Karakus, A. Lizana, and J. Campos, “Polarimetric method for liquid crystal displays characterization in presence of phase fluctuations,” Opt. Express 21(3), 3182–3192 (2013).
    [Crossref] [PubMed]
  27. B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
    [Crossref] [PubMed]
  28. M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Time-resolved switching analysis of a ferroelectric liquid crystal by snapshot Mueller matrix polarimetry,” Opt. Lett. 35(7), 1019–1021 (2010).
    [Crossref] [PubMed]
  29. P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
    [Crossref] [PubMed]
  30. P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
    [Crossref]
  31. P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
    [Crossref]
  32. Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
    [Crossref] [PubMed]
  33. Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
    [Crossref] [PubMed]
  34. J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
    [Crossref] [PubMed]
  35. X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
    [Crossref] [PubMed]
  36. T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
    [Crossref] [PubMed]
  37. X. Liu, Y. Yang, L. Han, and C.-S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
    [Crossref] [PubMed]
  38. B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: role of phase-field direction,” Appl. Opt. 39(26), 4802–4816 (2000).
    [Crossref] [PubMed]
  39. B. Gutmann and H. Weber, “Phase unwrapping with the branch-cut method: clustering of discontinuity sources and reverse simulated annealing,” Appl. Opt. 38(26), 5577–5593 (1999).
    [Crossref] [PubMed]

2018 (3)

2017 (5)

2016 (1)

2015 (1)

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

2014 (4)

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

X. Liu, B. Y. Wang, and C. S. Guo, “One-step Jones matrix polarization holography for extraction of spatially resolved Jones matrix of polarization-sensitive materials,” Opt. Lett. 39(21), 6170–6173 (2014).
[Crossref] [PubMed]

2013 (3)

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

C. Ramirez, B. Karakus, A. Lizana, and J. Campos, “Polarimetric method for liquid crystal displays characterization in presence of phase fluctuations,” Opt. Express 21(3), 3182–3192 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

2010 (2)

2009 (1)

2008 (4)

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
[Crossref]

X. F. Xiao and D. G. Voelz, “Liquid crystal variable retarder modeling of incident angle response with experimental verification,” Opt. Eng. 47(5), 525–534 (2008).
[Crossref]

Z. Wang, L. J. Millet, M. U. Gillette, and G. Popescu, “Jones phase microscopy of transparent and anisotropic samples,” Opt. Lett. 33(11), 1270–1272 (2008).
[Crossref] [PubMed]

2006 (1)

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

2004 (1)

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

2003 (1)

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

2002 (1)

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

2000 (3)

1999 (1)

1995 (1)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

1988 (1)

Algorri, J. F.

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

Babilotte, P.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

Booth, M. J.

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Buchnev, O.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure. Appl. Opt. 2(3), 216–222 (2000).

Cai, D.

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

Campos, J.

Cao, W.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Chen, E.

Chen, H.

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Chen, M.

Chen, T. A.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Choi, H.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
[Crossref]

Choi, Y.

Collings, N.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Coomber, S.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Crossland, W. A.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Dai, H. T.

de Bougrenet de la Tocnaye, J. L.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

Du, S.

S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).

Dubreuil, M.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Time-resolved switching analysis of a ferroelectric liquid crystal by snapshot Mueller matrix polarimetry,” Opt. Lett. 35(7), 1019–1021 (2010).
[Crossref] [PubMed]

Dupont, L.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Time-resolved switching analysis of a ferroelectric liquid crystal by snapshot Mueller matrix polarimetry,” Opt. Lett. 35(7), 1019–1021 (2010).
[Crossref] [PubMed]

Elston, S. J.

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Fedotov, V. A.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Fells, J. A. J.

Fu, C.

S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).

García-Cámara, B.

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Gillette, M. U.

Guo, C. S.

Guo, C.-S.

Guo, H.

S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).

Guo, T.

Gutmann, B.

Gwag, J. S.

Han, L.

Huang, J.

Huang, Y.

S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).

Hwang, S. J.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jang, J.

Jeng, S. C.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Jeong, J.

Jeong, M. Y.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
[Crossref]

Jiang, W.

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Kaczmarek, M.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Kang, Y. G.

Karakus, B.

Kawamoto, H.

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Kim, B. M.

Kim, M. W.

Kim, Y.

Konforti, N.

Kwon, J. H.

Lagerwall, J. P. F.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

Le Jeune, B.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Time-resolved switching analysis of a ferroelectric liquid crystal by snapshot Mueller matrix polarimetry,” Opt. Lett. 35(7), 1019–1021 (2010).
[Crossref] [PubMed]

Lee, K. J.

Lee, S. L.

Li, M. C.

Li, Y.

Liao, J.

Lin, K. R.

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Ling, N.

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

Liu, X.

Liu, Y. J.

Lizana, A.

Luo, D.

Maker, P.

Marom, E.

Mias, S.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Millet, L. J.

Miu, H.

Moreira, M.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Morris, S. M.

Muller, R.

Munoz, A.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Nunes Henrique Silva, V.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

Palffy-Muhoray, P.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Park, J.

Park, J. H.

Park, K.

Park, Y.

Podoliak, N.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Popescu, G.

Psaltis, D.

Ramirez, C.

Ren, H. W.

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

Rivet, S.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Time-resolved switching analysis of a ferroelectric liquid crystal by snapshot Mueller matrix polarimetry,” Opt. Lett. 35(7), 1019–1021 (2010).
[Crossref] [PubMed]

Sánchez-Pena, J. M.

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

Sathaye, K.

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

Scalia, G.

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

Shao, G.

Silva, V. N. H.

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

Stanley, M.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Sun, X. W.

Taheri, B.

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Tan, G.

Urruchi, V.

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Voelz, D. G.

X. F. Xiao and D. G. Voelz, “Liquid crystal variable retarder modeling of incident angle response with experimental verification,” Opt. Eng. 47(5), 525–534 (2008).
[Crossref]

Wang, B. Y.

Wang, H.

Wang, X.

Wang, Z.

Weber, H.

Wei, D.

Wilkinson, T. D.

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

Wilson, D.

Wu, J. W.

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
[Crossref]

Wu, S. T.

Xiao, X. F.

X. F. Xiao and D. G. Voelz, “Liquid crystal variable retarder modeling of incident angle response with experimental verification,” Opt. Eng. 47(5), 525–534 (2008).
[Crossref]

Xie, C.

Xie, H.

Xie, X.

Xin, Z.

Xu, S.

Yang, H.

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

Yang, T. D.

Yang, Y.

Ye, Y.

Yi, J.

Yu, H.

Zhang, X.

Zheludev, N. I.

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Zhu, R.

Adv. Opt. Mater. (1)

O. Buchnev, N. Podoliak, M. Kaczmarek, N. I. Zheludev, and V. A. Fedotov, “Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch,” Adv. Opt. Mater. 3(5), 674–679 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. B (1)

S. J. Hwang, T. A. Chen, K. R. Lin, and S. C. Jeng, “Ultraviolet-light-treated polyimide alignment layers for polarization-independent liquid crystal Fresnel lenses,” Appl. Phys. B 107(1), 151–155 (2012).
[Crossref]

Appl. Phys. Lett. (3)

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electro-optically controlled liquid-crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[Crossref]

Y. H. Fan, Y. H. Lin, H. W. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004).
[Crossref]

M. Y. Jeong, H. Choi, and J. W. Wu, “Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell,” Appl. Phys. Lett. 92(5), 1707–1709 (2008).
[Crossref]

Chin. J. Lasers (1)

D. Cai, H. Yang, N. Ling, and W. Jiang, “Diffraction effect of liquid crystal spatial light modulator using for beam deflection,” Chin. J. Lasers 35(4), 491–495 (2008).
[Crossref]

Curr. Appl. Phys. (1)

J. P. F. Lagerwall and G. Scalia, “A new era for liquid crystal research: Applications of liquid crystals in soft matter nano-, bio- and microtechnology,” Curr. Appl. Phys. 12(6), 1387–1412 (2012).
[Crossref]

Eur Phys J E Soft Matter (1)

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, L. Dupont, and B. Le Jeune, “Impact of the concentration in polymer on the dynamic behavior of polymer stabilized ferroelectric liquid crystal using snap-shot Mueller matrix polarimetry,” Eur Phys J E Soft Matter 36(5), 55 (2013).
[Crossref] [PubMed]

J. Appl. Opt. (1)

S. Du, Y. Huang, C. Fu, and H. Guo, “Liquid-crystal beam deflection wave control method based on phased array radar,” J. Appl. Opt. 38(4), 581–586 (2017).

J. Appl. Phys. (1)

P. Babilotte, V. Nunes Henrique Silva, K. Sathaye, M. Dubreuil, S. Rivet, L. Dupont, J. L. de Bougrenet de la Tocnaye, and B. Le Jeune, “Twisted ferroelectric liquid crystals dynamic behaviour modification under electric field: A Mueller matrix polarimetry approach using birefringence,” J. Appl. Phys. 115(3), 25–67 (2014).
[Crossref]

J. Opt. A-Pure. Appl. Opt. (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A-Pure. Appl. Opt. 2(3), 216–222 (2000).

J. Phys. D Appl. Phys. (1)

P. Babilotte, V. N. H. Silva, M. Dubreuil, S. Rivet, B. Le Jeune, and L. Dupont, “Experimental study of the dynamic behaviour of twisted ferroelectric liquid crystal samples using snap-shot Mueller matrix polarimetry,” J. Phys. D Appl. Phys. 46(12), 125101 (2013).
[Crossref]

Materials (Basel) (1)

B. García-Cámara, J. F. Algorri, V. Urruchi, and J. M. Sánchez-Pena, “Directional scattering of semiconductor nanoparticles embedded in a liquid crystal,” Materials (Basel) 7(4), 2784–2794 (2014).
[Crossref] [PubMed]

Opt. Eng. (2)

S. Mias, N. Collings, T. D. Wilkinson, S. Coomber, M. Stanley, and W. A. Crossland, “Spatial sampling in pixelated-metal-mirror ferroelectric-liquid-crystal optically addressed spatial-light-modulator devices,” Opt. Eng. 42(7), 2075–2081 (2003).
[Crossref]

X. F. Xiao and D. G. Voelz, “Liquid crystal variable retarder modeling of incident angle response with experimental verification,” Opt. Eng. 47(5), 525–534 (2008).
[Crossref]

Opt. Express (12)

H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, “A negative-positive tunable liquid-crystal microlens array by printing,” Opt. Express 17(6), 4317–4323 (2009).
[Crossref] [PubMed]

T. D. Yang, K. Park, Y. G. Kang, K. J. Lee, B. M. Kim, and Y. Choi, “Single-shot digital holographic microscopy for quantifying a spatially-resolved Jones matrix of biological specimens,” Opt. Express 24(25), 29302–29311 (2016).
[Crossref] [PubMed]

H. Chen, R. Zhu, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Enlarging the color gamut of liquid crystal displays with a functional reflective polarizer,” Opt. Express 25(1), 102–111 (2017).
[Crossref] [PubMed]

H. Chen, R. Zhu, M. C. Li, S. L. Lee, and S. T. Wu, “Pixel-by-pixel local dimming for high-dynamic-range liquid crystal displays,” Opt. Express 25(3), 1973–1984 (2017).
[Crossref] [PubMed]

X. Liu, Y. Yang, L. Han, and C.-S. Guo, “Fiber-based lensless polarization holography for measuring Jones matrix parameters of polarization-sensitive materials,” Opt. Express 25(7), 7288–7299 (2017).
[Crossref] [PubMed]

H. Chen, G. Tan, M. C. Li, S. L. Lee, and S. T. Wu, “Depolarization effect in liquid crystal displays,” Opt. Express 25(10), 11315–11328 (2017).
[Crossref] [PubMed]

E. Chen, H. Xie, J. Huang, H. Miu, G. Shao, Y. Li, T. Guo, S. Xu, and Y. Ye, “Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays,” Opt. Express 26(3), 3466–3482 (2018).
[Crossref] [PubMed]

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

J. A. J. Fells, S. J. Elston, M. J. Booth, and S. M. Morris, “Time-resolved retardance and optic-axis angle measurement system for characterization of flexoelectro-optic liquid crystal and other birefringent devices,” Opt. Express 26(5), 6126–6142 (2018).
[Crossref] [PubMed]

Y. Kim, J. Jeong, J. Jang, M. W. Kim, and Y. Park, “Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix,” Opt. Express 20(9), 9948–9955 (2012).
[Crossref] [PubMed]

C. Ramirez, B. Karakus, A. Lizana, and J. Campos, “Polarimetric method for liquid crystal displays characterization in presence of phase fluctuations,” Opt. Express 21(3), 3182–3192 (2013).
[Crossref] [PubMed]

J. Park, H. Yu, J. H. Park, and Y. Park, “LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy,” Opt. Express 22(20), 24304–24311 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Philos Trans A Math Phys Eng Sci (1)

P. Palffy-Muhoray, W. Cao, M. Moreira, B. Taheri, and A. Munoz, “Photonics and lasing in liquid crystal materials,” Philos Trans A Math Phys Eng Sci 364(1847), 2747–2761 (2006).
[Crossref] [PubMed]

Proc. IEEE (1)

H. Kawamoto, “The history of liquid-crystal displays,” Proc. IEEE 90(4), 460–500 (2002).
[Crossref]

Other (2)

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, 1993), Vol. 23.

D. M. Cai, N. Ling, and W. H. Jiang, “Performance of liquid crystal spatial light modulator (LC-SLM) as a wave-front corrector for atmospheric turbulence compensation,” in Free-Space Laser Communication Technologies XIX and Atmospheric Propagation of Electromagnetic Waves, S. Mecherle and O. Korotkova, eds. (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the common-path interferometer system, including a narrow bandpass filter (NBF), polarizer (P), liquid crystal sample (LC sample), microscope objective (MO) and polarization camera; the direction of the light is parallel to the z axis, and the direction of the polarizer is parallel to the y axis.
Fig. 2
Fig. 2 Schematic diagram of the LC sample.
Fig. 3
Fig. 3 (a) Preset effective refractive index (RI) distribution and (b) preset optic-axis angle distribution; the interferogram’s intensity distribution with four polarization directions, (c) 0°, (d) 45°, (e) 90°, and (f) 135°.
Fig. 4
Fig. 4 Simulation results of (a) effective refractive index (RI) distribution, (b) wrapped optic-axis angle distribution, (c) average director distribution, and (d) unwrapped optic-axis angle distribution.
Fig. 5
Fig. 5 Intensity distributions of the LC sample when rotating (a) 40°, (b) 50°, and (c) 60°; the calculated results of the LC optic-axis angle distribution when rotating (d) 40°, (e) 50°, and (f) 60°; and the calculated results of the LC effective refractive index distribution when rotating (g) 40°, (h) 50°, and (i) 60°.
Fig. 6
Fig. 6 (a) Measured optic-axis angles under different rotation angles, and (b) effective refractive index under different rotation angles.
Fig. 7
Fig. 7 (a) RMSEs of the measured optic-axis angle distribution under different rotation angles, and (b) RMSEs of the effective refractive index distribution under different rotation angles.
Fig. 8
Fig. 8 (a) RMSEs of the measured optic-axis angle distribution under different rotation angles at different retardance, and (b) RMSEs of the effective refractive index distribution under different rotation angles at different retardance.
Fig. 9
Fig. 9 The effective refractive index distribution of LC sample refractive index when the LC sample rotating (a) 40°, (b) 50°, (c) 60° and the corresponding local distribution (d-f).
Fig. 10
Fig. 10 Schematic diagram of the LC sample with varying thickness.
Fig. 11
Fig. 11 The experimental results of LC sample with varying thickness, and the corresponding optic-axis angle distribution and effective refractive index distribution.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

G=[ A cos 2 θ+A sin 2 θ e iδ AcosθsinθAcosθsinθ e iδ AcosθsinθAcosθsinθ e iδ A sin 2 θ+A cos 2 θ e iδ ],
E=[ cosβ sinβ ]G[ 0 1 ],
E 1 =AcosθsinθeAcosθsinθ e iδ .
E 2 =A sin 2 θ+A cos 2 θ e iδ .
E 3 = 2 2 ( AcosθsinθAcosθsinθ e iδ +A sin 2 θ+A cos 2 θ e iδ )
E 4 = 2 2 ( Acosθsinθ+Acosθsinθ e iδ +A sin 2 θ+A cos 2 θ e iδ )
I 1 = E 1 E 1 * =2 A 2 cos 2 θ sin 2 θ[ 1cos( ( n o n' )d2π λ ) ].
I 2 = E 2 E 2 * = A 2 sin 4 θ+ A 2 cos 4 θ+2 A 2 cos 2 θ sin 2 θcos( ( n o n' )d2π λ ).
I 3 = E 3 E 3 * = A 2 cos 2 θ sin 2 θ[ 1cos( ( n o n' )d2π λ ) ] A 2 cosθsinθ[ ( sin 2 θ cos 2 θ )( 1cos( ( n o n' )d2π λ ) ) ] + 1 2 A 2 sin 4 θ+ 1 2 A 2 cos 4 θ+ A 2 cos 2 θ sin 2 θcos( ( n o n' )d2π λ ).
I 4 = E 4 E 4 * = A 2 cos 2 θ sin 2 θ[ 1cos( ( n o n' )d2π λ ) ] + A 2 cosθsinθ[ ( sin 2 θ cos 2 θ )( 1cos( ( n o n' )d2π λ ) ) ] + 1 2 A 2 sin 4 θ+ 1 2 A 2 cos 4 θ+ A 2 cos 2 θ sin 2 θcos( ( n o n' )d2π λ ).
2θ=arccot[ I 3 I 4 2 I 1 ],
A 2 = I 1 + I 2
n'= n o λ 2πd arccos( 1 I 1 2 A 2 cos 2 θ sin 2 θ )
n'= n o n e n o 2 sin 2 ϕ+ n e 2 cos 2 ϕ ,

Metrics