Abstract

We demonstrated an all-normal-dispersion nonlinear polarization rotation mode-locked Tm:ZBLAN fiber laser in the 2 μm wavelength band. All fibers in the experiment were ZBLAN fibers with normal dispersion in the wavelength band. An average power of 63 mW with a characteristic cat-ear shaped optical spectrum of an ANDi laser was obtained. The center wavelength and the spectral bandwidth were 1880 nm and ~80 nm, respectively. The repetition rate was 70.6 MHz and the corresponding pulse energy was 0.9 nJ. The pulse duration directly from the oscillator was 860 fs and it was compressed to 107 fs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of stable clean ultrashort pulses in a simple all-fiber, all-normal dispersion ytterbium-doped mode-locked laser

Pradeep K. Gupta, Chandra P. Singh, Pranab K. Mukhopadhyay, and Kushvinder S. Bindra
Appl. Opt. 58(20) 5533-5539 (2019)

All-normal dispersion, all-fibered PM laser mode-locked by SESAM

Jean-Bernard Lecourt, Charles Duterte, François Narbonneau, Damien Kinet, Yves Hernandez, and Domenico Giannone
Opt. Express 20(11) 11918-11923 (2012)

Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation

Sergey Smirnov, Sergey Kobtsev, Sergey Kukarin, and Aleksey Ivanenko
Opt. Express 20(24) 27447-27453 (2012)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  2. R. Gumenyuk and O. G. Okhotnikov, “Impact of gain medium dispersion on stability of soliton bound states in fiber laser,” IEEE Photonics Technol. Lett. 25(2), 133–135 (2013).
    [Crossref]
  3. R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
    [Crossref]
  4. A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
    [Crossref] [PubMed]
  5. F. W. Wise, A. Chong, and W. H. Renninger, “High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [Crossref]
  6. B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
    [Crossref]
  7. A. Ruehl, H. Hundertmark, D. Wandt, C. Fallnich, and D. Kracht, “0.7W all-fiber Erbium oscillator generating 64 fs wave breaking-free pulses,” Opt. Express 13(16), 6305–6309 (2005).
    [Crossref] [PubMed]
  8. C. Finot, F. Parmigiani, P. Petropoulos, and D. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14(8), 3161–3170 (2006).
    [Crossref] [PubMed]
  9. D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
    [Crossref]
  10. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [Crossref]
  11. W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26(8), 9432–9463 (2018).
    [Crossref] [PubMed]
  12. M. Baumgartl, C. Lecaplain, A. Hideur, J. Limpert, and A. Tünnermann, “66 W average power from a microjoule-class sub-100 fs fiber oscillator,” Opt. Lett. 37(10), 1640–1642 (2012).
    [Crossref] [PubMed]
  13. W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6(2), 194–197 (2019).
    [Crossref]
  14. M. Olivier, V. Boulanger, F. Guilbert-Savary, P. Sidorenko, F. W. Wise, and M. Piché, “Femtosecond fiber Mamyshev oscillator at 1550 nm,” Opt. Lett. 44(4), 851–854 (2019).
    [Crossref] [PubMed]
  15. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
    [Crossref]
  16. P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
    [Crossref] [PubMed]
  17. V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).
  18. K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
    [Crossref]
  19. Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
    [Crossref]
  20. Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
    [Crossref] [PubMed]
  21. C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
    [Crossref] [PubMed]
  22. F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
    [Crossref]
  23. Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
    [Crossref]
  24. J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, and M. Bernier, “Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber,” Opt. Lett. 41(8), 1756–1759 (2016).
    [Crossref] [PubMed]
  25. J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
    [Crossref]
  26. M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
    [Crossref] [PubMed]
  27. Fiberdesk, https://www.fiberdesk.com/

2019 (2)

2018 (2)

2016 (1)

2015 (6)

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses,” Opt. Express 23(11), 13776–13787 (2015).
[Crossref] [PubMed]

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
[Crossref] [PubMed]

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

2014 (3)

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

P. Li, A. Ruehl, U. Grosse-Wortmann, and I. Hartl, “Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 μm,” Opt. Lett. 39(24), 6859–6862 (2014).
[Crossref] [PubMed]

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

2013 (1)

R. Gumenyuk and O. G. Okhotnikov, “Impact of gain medium dispersion on stability of soliton bound states in fiber laser,” IEEE Photonics Technol. Lett. 25(2), 133–135 (2013).
[Crossref]

2012 (1)

2010 (1)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

2008 (2)

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

2006 (1)

2005 (1)

2003 (1)

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1995 (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Adam, J. K.

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Backus, S.

Baumgartl, M.

Bernier, M.

Boulanger, V.

Brida, D.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Byer, R. L.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Carrée, J.-Y.

Chen, Y.

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Chong, A.

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

Cui, J.

Digonnet, M. J. F.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Dmitry, K.

K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Donodin, A.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Doualan, J. L.

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Dvoyrin, V. V.

K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Fallnich, C.

Finot, C.

Fortin, V.

Fu, W.

Fuji, T.

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

Gaida, C.

Gan, F.

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

Gauthier, J.-C.

Gebhardt, M.

Girard, S.

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Grosse-Wortmann, U.

Guilbert-Savary, F.

Gumenyuk, R.

R. Gumenyuk and O. G. Okhotnikov, “Impact of gain medium dispersion on stability of soliton bound states in fiber laser,” IEEE Photonics Technol. Lett. 25(2), 133–135 (2013).
[Crossref]

Hädrich, S.

Haquin, H.

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Hartl, I.

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Hideur, A.

Ho, D.

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Hu, M.

Huang, C.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Hundertmark, H.

Ilday, F. Ö.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Jauregui, C.

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Karasik, V.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Kawato, S.

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

Kracht, D.

Krauss, G.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Krylov, A.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Lazarev, V.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Lecaplain, C.

Leitenstorfer, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Li, P.

Liao, R.

Limpert, J.

Liu, W.

Montagne, J. E.

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Nishio, M.

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

Nomura, Y.

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

Okhotnikov, O. G.

R. Gumenyuk and O. G. Okhotnikov, “Impact of gain medium dispersion on stability of soliton bound states in fiber laser,” IEEE Photonics Technol. Lett. 25(2), 133–135 (2013).
[Crossref]

Oktem, B.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Olivier, M.

Parmigiani, F.

Petropoulos, P.

Piché, M.

Poulain, M.

Poulain, S.

Raghuraman, S.

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Renninger, W. H.

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Richardson, D.

Rudy, C. W.

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Ruehl, A.

Sell, A.

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

Shang, W.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Sidorenko, P.

Song, Y.

Sorokina, I. T.

K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

Stutzki, F.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Tang, D.

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Tang, Y.

Y. Tang, A. Chong, and F. W. Wise, “Generation of 8 nJ pulses from a normal-dispersion thulium fiber laser,” Opt. Lett. 40(10), 2361–2364 (2015).
[Crossref] [PubMed]

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Tarabrin, M.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Tünnermann, A.

Ülgüdür, C.

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Vallée, R.

Voropaev, V.

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Wandt, D.

Wang, C.

W. Liu, R. Liao, J. Zhao, J. Cui, Y. Song, C. Wang, and M. Hu, “Femtosecond Mamyshev oscillator with 10-MW-level peak power,” Optica 6(2), 194–197 (2019).
[Crossref]

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Wise, F. W.

Woodward, R. I.

R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
[Crossref]

Wright, L. G.

W. Fu, L. G. Wright, P. Sidorenko, S. Backus, and F. W. Wise, “Several new directions for ultrafast fiber lasers [Invited],” Opt. Express 26(8), 9432–9463 (2018).
[Crossref] [PubMed]

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

Xu, J.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Yang, N.

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Yoo, S.

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Zhao, J.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Nomura, M. Nishio, S. Kawato, and T. Fuji, “Development of Ultrafast Laser Oscillators Based on Thulium-Doped ZBLAN Fibers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 0900107 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

K. Dmitry, V. V. Dvoyrin, and I. T. Sorokina, “Mode-Locked Thulium-Doped Fiber Lasers Based on Normal Dispersion Active Fiber,” IEEE Photonics Technol. Lett. 27(15), 1609–1612 (2015).
[Crossref]

R. Gumenyuk and O. G. Okhotnikov, “Impact of gain medium dispersion on stability of soliton bound states in fiber laser,” IEEE Photonics Technol. Lett. 25(2), 133–135 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

F. Gan, “Optical properties of fluoride glasses: a review,” J. Non-Cryst. Solids 184, 9–20 (1995).
[Crossref]

J. Opt. (1)

R. I. Woodward, “Dispersion engineering of mode-locked fibre lasers,” J. Opt. 20(3), 033002 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

D. Brida, G. Krauss, A. Sell, and A. Leitenstorfer, “UltrabroadbandEr:fiber lasers,” Laser Photonics Rev. 8(3), 409–428 (2014).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High‐energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[Crossref]

Nat. Photonics (1)

B. Oktem, C. Ülgüdür, and F. Ö. Ilday, “Soliton–similariton fibre laser,” Nat. Photonics 4(5), 307–311 (2010).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. 20(6), 642–649 (2014).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

J. L. Doualan, S. Girard, H. Haquin, J. K. Adam, and J. E. Montagne, “Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,” Opt. Mater. 24(3), 563–574 (2003).
[Crossref]

Optica (1)

Rep. Prog. Phys. (1)

A. Chong, L. G. Wright, and F. W. Wise, “Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress,” Rep. Prog. Phys. 78(11), 113901 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

C. Huang, C. Wang, W. Shang, N. Yang, Y. Tang, and J. Xu, “Developing high energy dissipative soliton fiber lasers at 2 micron,” Sci. Rep. 5(1), 13680 (2015).
[Crossref] [PubMed]

Other (3)

Y. Chen, S. Raghuraman, D. Ho, D. Tang, and S. Yoo, “Normal dispersion thulium fiber for ultrafast near-2 µm fiber laser,” in Conference on Lasers and Electro-Optics, (2018).
[Crossref]

Fiberdesk, https://www.fiberdesk.com/

V. Voropaev, A. Donodin, V. Lazarev, M. Tarabrin, V. Karasik, and A. Krylov, “All-fiber passively mode-locked ring laser based on normal dispersion active Tm-doped fiber,” Frontiers in Optics (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic picture of the ANDi NPR Tm:ZBLAN fiber laser.
Fig. 2
Fig. 2 (a)Power properties of the ANDi NPR Tm:ZBLAN fiber laser with the 10 nm bandwidth BPF. (b) Optical spectra of the pulse at the average power of 67 mW (solid curve) and 49 mW (dotted curve). (c) Measured autocorrelation trace (points) and fit (solid curve) of pulses directly from the oscillator.
Fig. 3
Fig. 3 (a) Mode-locked pulse trains for the period of 100 ns. (b) RF spectra of the ANDi NPR Tm:ZBLAN fiber laser. 0-2 GHz range, (c) 70.5-70.7MHz range.
Fig. 4
Fig. 4 (a) Power properties of the ANDi NPR Tm:ZBLAN fiber laser with the 35 nm bandwidth BPF. Optical spectra of the pulse at the average power of 63 mW (solid curve) and 48 mW (dashed curve).
Fig. 5
Fig. 5 (a) Measured autocorrelation trace of the ~80 nm spectral bandwidth pulses directly from the oscillator. Points are measured data. Solid curve is Gaussian fit. (b) Temporal profile of calculated transform limited pulse. (c) Measured pulse duration as a function of dispersion value. (d) Measured autocorrelation trace after the compressor with GDD of ~-21000fs2. Points are measured data. Solid curve is Gaussian fit.
Fig. 6
Fig. 6 Simulated (a) temporal profile and (b) spectrum of our ANDi Tm:ZBLAN fiber laser at the output power level of 60 mW.

Tables (1)

Tables Icon

Table 1 Main parameters for the simulation.

Metrics