Abstract

In order to suppress the undesired polarization in the hollow-core photonic-crystal fiber (HCPCF) resonator and reduce the loss of the resonator, we realize a low-crosstalk polarizing resonator with the polarization-correlated phase modulation technique (PCPM). In addition, we put forward a homologous multi-frequency differential detection scheme, with which the backscattering noise and the backreflection noise of the gyro can be well suppressed. Finally, we realize a hollow-core photonic-crystal fiber optic gyro based on the low-crosstalk polarizing resonator and the homologous multi-frequency differential detection. With this novel gyro system, a bias stability of 1.23°/h is successfully demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of long-term stability of hollow-core photonic-crystal fiber optic gyro based on single-polarization resonator

Hongchen Jiao, Lishuang Feng, Ning Liu, and Zhaohua Yang
Opt. Express 26(7) 8645-8655 (2018)

Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber

Hongchen Jiao, Lishuang Feng, Kai Wang, Ning Liu, and Zhaohua Yang
Opt. Express 25(22) 27806-27817 (2017)

Resonant fiber optic gyroscope with three-frequency differential detection by sideband locking

Yonggui Zhang, Lishuang Feng, Hui Li, Hongchen Jiao, Ning Liu, and Chunqi Zhang
Opt. Express 28(6) 8423-8435 (2020)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” Optical Fiber Sensors, OSA Technical Digest (2006).
  2. N. M. Barbour, “Inertial Navigation Sensors,” in AIAA Guidance, Navigation, and Control Conference, (C. S. Draper Lab, 2011).
  3. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  4. L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
    [Crossref]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23(21), 3916–3924 (1984).
    [Crossref] [PubMed]
  6. V. Dangui, M. J. F. Digonnet, and G. S. Kino, “Determination of the mode reflection coefficient in air-core photonic bandgap fibers,” Opt. Express 15(9), 5342–5359 (2007).
    [Crossref] [PubMed]
  7. S. L. A. Carrara, B. Y. Kim, and H. J. Shaw, “Bias drift reduction in polarization-maintaining fiber gyroscope,” Opt. Lett. 12(3), 214–216 (1987).
    [Crossref] [PubMed]
  8. K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
    [Crossref]
  9. Y. Yan, H. Ma, and Z. Jin, “Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber,” Opt. Express 23(3), 2002–2009 (2015).
    [Crossref] [PubMed]
  10. H. Ma, Z. Chen, Z. Yang, X. Yu, and Z. Jin, “Polarization-induced noise in resonator fiber optic gyro,” Appl. Opt. 51(28), 6708–6717 (2012).
    [Crossref] [PubMed]
  11. H. Jiao, L. Feng, K. Wang, N. Liu, and Z. Yang, “Analysis of polarization noise in transmissive single-beam-splitter resonator optic gyro based on hollow-core photonic-crystal fiber,” Opt. Express 25(22), 27806–27817 (2017).
    [Crossref] [PubMed]
  12. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Backscattering in an optical passive ring-resonator gyro: experiment,” Appl. Opt. 25(23), 4448–4451 (1986).
    [Crossref] [PubMed]
  13. H. Ma, X. Chang, Z. Yang, and Z. Jin, “Full investigation of the backscattering in resonator fiber optic gyro,” Opt. Commun. 284(19), 4480–4484 (2011).
    [Crossref]
  14. H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29(1), 85–90 (2011).
    [Crossref]
  15. J. Wang, L. Feng, Y. Zhi, H. Liu, W. Wang, and M. Lei, “Reduction of backreflection noise in resonator micro-optic gyro by integer period sampling,” Appl. Opt. 52(32), 7712–7717 (2013).
    [Crossref] [PubMed]
  16. Y. Zhi, L. Feng, J. Wang, and Y. Tang, “Reduction of backscattering noise in a resonator integrated optic gyro by double triangular phase modulation,” Appl. Opt. 54(1), 114–122 (2015).
    [Crossref] [PubMed]
  17. J. Wang, L. Feng, Q. Wang, X. Wang, and H. Jiao, “Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro,” Opt. Express 24(5), 5463–5468 (2016).
    [Crossref] [PubMed]
  18. H. Jiao, L. Feng, N. Liu, and Z. Yang, “Improvement of long-term stability of hollow-core photonic-crystal fiber optic gyro based on single-polarization resonator,” Opt. Express 26(7), 8645–8655 (2018).
    [Crossref] [PubMed]
  19. R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” IEEE Electronics Letters. 26(6), 389–391 (1990).
    [Crossref]
  20. F. M. Gardner, Phaselock techniques (Wiley, 1979).

2018 (1)

2017 (1)

2016 (2)

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

J. Wang, L. Feng, Q. Wang, X. Wang, and H. Jiao, “Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro,” Opt. Express 24(5), 5463–5468 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (1)

2012 (1)

2011 (2)

H. Ma, X. Chang, Z. Yang, and Z. Jin, “Full investigation of the backscattering in resonator fiber optic gyro,” Opt. Commun. 284(19), 4480–4484 (2011).
[Crossref]

H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29(1), 85–90 (2011).
[Crossref]

2007 (1)

1992 (1)

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

1990 (1)

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” IEEE Electronics Letters. 26(6), 389–391 (1990).
[Crossref]

1987 (1)

1986 (1)

1984 (1)

Arrizon, A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Carrara, S. L. A.

Chang, X.

H. Ma, X. Chang, Z. Yang, and Z. Jin, “Full investigation of the backscattering in resonator fiber optic gyro,” Opt. Commun. 284(19), 4480–4484 (2011).
[Crossref]

Chen, Z.

Dangui, V.

Digonnet, M. J. F.

Feng, L.

He, Z.

Higashiguchi, M.

Ho, W.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Hotate, K.

Iwatsuki, K.

Jiao, H.

Jin, Z.

Kim, B. Y.

Kino, G. S.

Lei, M.

Liu, H.

Liu, N.

Ma, H.

Mead, D.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Mosor, S.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Qiu, T.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” Optical Fiber Sensors, OSA Technical Digest (2006).

Ramos, R. T.

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” IEEE Electronics Letters. 26(6), 389–391 (1990).
[Crossref]

Salit, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G. A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” Optical Fiber Sensors, OSA Technical Digest (2006).

Sanders, S. J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Seeds, A. J.

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” IEEE Electronics Letters. 26(6), 389–391 (1990).
[Crossref]

Shaw, H. J.

Smiciklas, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Song, W.

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
[Crossref]

Strandjord, L. K.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” Optical Fiber Sensors, OSA Technical Digest (2006).

Takiguchi, K.

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

Tang, Y.

Wang, J.

Wang, K.

Wang, Q.

Wang, W.

Wang, X.

Wu, J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Yan, Y.

Yang, Z.

Yu, X.

Zhi, Y.

Appl. Opt. (5)

IEEE Electronics Letters. (1)

R. T. Ramos and A. J. Seeds, “Delay, linewidth and bandwidth limitations in optical phase-locked loop design,” IEEE Electronics Letters. 26(6), 389–391 (1990).
[Crossref]

J. Lightwave Technol. (2)

H. Ma, Z. He, and K. Hotate, “Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro,” J. Lightwave Technol. 29(1), 85–90 (2011).
[Crossref]

K. Takiguchi and K. Hotate, “Bias of an optical passive ring-resonator gyro caused by the misalignment of the polarization axis in the polarization-maintaining fiber resonator,” J. Lightwave Technol. 10(4), 514–522 (1992).
[Crossref]

Opt. Commun. (1)

H. Ma, X. Chang, Z. Yang, and Z. Jin, “Full investigation of the backscattering in resonator fiber optic gyro,” Opt. Commun. 284(19), 4480–4484 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (2)

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

L. Feng, H. Jiao, and W. Song, “Research on polarization noise of hollow-core photonic crystal fiber resonator optic gyroscope,” Proc. SPIE 9679, 967919 (2015).
[Crossref]

Other (3)

G. A. Sanders, L. K. Strandjord, and T. Qiu, “Hollow core fiber optic ring resonator for rotation sensing,” Optical Fiber Sensors, OSA Technical Digest (2006).

N. M. Barbour, “Inertial Navigation Sensors,” in AIAA Guidance, Navigation, and Control Conference, (C. S. Draper Lab, 2011).

F. M. Gardner, Phaselock techniques (Wiley, 1979).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 The multi-frequency differential HCPCF resonator optic gyro based on AOMs and heterodyne OPLLs.
Fig. 2
Fig. 2 Structure of the low-crosstalk polarizing resonator based on HCPCF.
Fig. 3
Fig. 3 Simulations of the PERout. (a) The PERout changing periodically with the 2π cycle of the φ1 and the π cycle of the φ2. (b) The minimal PERout changing with the β with different OPER.
Fig. 4
Fig. 4 Resonance curve of low-crosstalk polarizing resonator.
Fig. 5
Fig. 5 The spectra of multi-frequency differential detection scheme.
Fig. 6
Fig. 6 Schematic diagram of the homologous heterodyne OPLL.
Fig. 7
Fig. 7 Requirement for the linewidth of the beat signal δf with different cut off frequency fc of the LF and time delay Td of the loop.
Fig. 8
Fig. 8 Tests of the spectral distribution of the beat signal between two paths of light (under unlocked condition and locked condition).
Fig. 9
Fig. 9 PSDs of the center-frequency drift of beat signals with the OPLL enabled (Locked) and with the OPLL disenabled (unLocked).
Fig. 10
Fig. 10 Stable test result of the novel gyro system. (a) The tested gyro output with a STD of about 2.6°/h. (b) The Allan deviation of the test, showing a bias stability of 1.23°/h.
Fig. 11
Fig. 11 PSDs of the gyro outputs in case of the SLCL and case of the HMFD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E out = T 2 C T 1 E in C=[ cos( β ) sin( β ) sin( β ) cos( β ) ] ; T i =[ 1 e i φ i ] ; E in =[ E e1 E e2 ]
Φ= φ 2 + σ 1 σ 2 σ 1 =arctan[ E e2 sin( β )sin( φ 1 )/ ( E e1 cos( β )+ E e2 sin( β )cos( φ 1 ) ) ] σ 2 =arctan[ E e2 cos( β )sin( φ 1 )/ ( E e2 cos( β )cos( φ 1 ) E e1 sin( β ) ) ] E 1 = ( E e1 cos( β ) ) 2 +2 E e1 E e2 sin( β )cos( β )cos( φ 1 )+ ( E e2 sin( β ) ) 2 E 2 = ( E e1 sin( β ) ) 2 2 E e1 E e2 sin( β )cos( β )cos( φ 1 )+ ( E e2 cos( β ) ) 2 A= E 1 2 sin( 2Φ ) ; B= E 1 2 cos( 2Φ )+ E 2 2 α=A/ A 2 + B 2 ; γ=B/ A 2 + B 2 l 1 = ( E 1 2 ( 1+αsin( 2Φ )+γcos( 2Φ ) )+ E 2 2 ( 1+γ ) )/2 l 2 = ( E 1 2 ( 1αsin( 2Φ )γcos( 2Φ ) )+ E 2 2 ( 1γ ) )/2 PE R out =20lg( l 1 / l 2 )
E sum =( E s 2 p= + i p J p ( η )F( ω 0 +p ω 1 ) e i( ω 0 +p ω 1 )t + E b 2 q= + i q J q ( ρ )F( ω 0 +q ω 2 ) e i[ ( ω 0 +q ω 2 )t+ξ ] ) I= E sum E sum
A p =F( ω 0 +p ω 1 ) S= E s 2 p= + 2 J p1 ( η ) J p ( η )Re( A p1 A p ) cos( ω 1 t ) +2 E s E b J 1 ( η ) J 0 ( ρ )Re( A 1 A 0 )cos( ξ )cos( ω 1 t+( A 1 A 0 ) )
I= I 0 + I 1 +2 I 0 I 1 cos( Δϕ ) ; Δϕ= 0 t 2πΔf( τ )dτ
P= I 0 I 1 sin( δϕΔϕ ) + I 0 I 1 sin( δϕ+Δϕ ) +( I 0 + I 1 )sin( δϕ ) ; δϕ= 0 t 2π f r ( τ )dτ
σ 2 = S p ( f ) | 1H( j2πf ) | 2 df + S s ( f ) 4 R 2 I 0 I 1 | H( j2πf ) | 2 df S p ( f )= δf/ ( 2π f 2 ) ; S s ( f )=2eR I 1 B n = 0 | H( i2πf ) | 2 df ; I p = 0 | 1H( i2πf ) | 2 df
H( s )= ( k p + k i s )F( s )K 1 s 1+( k p + k i s )F( s )K 1 s F( s )= e s T d 1+ s 2π f c
T ll =π e ( 2 σ 2 ) 4 B n

Metrics