Abstract

An Nd:YAG Micro-MOPA, based on a microchip master oscillator and power amplifier system with gain aperture beam cleaning, could generate sub-ns 200 mJ pulses with extremely high brightness of 18 PW/sr·cm2 [Opt. Express 268609 (2018)]. However, the system repetition rate was limited to 10 Hz, due to thermal problems occurring in the main amplifier rod under high-power operation. In this work, we achieved 100 Hz operation with pulse brightness of 11 PW/sr·cm2 by optical compensation of thermal lensing, which was evaluated through calculations and an experiment.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High brightness energetic pulses delivered by compact microchip-MOPA system

Vincent Yahia and Takunori Taira
Opt. Express 26(7) 8609-8618 (2018)

30 mJ, 1 kHz sub-nanosecond burst-mode Nd:YAG laser MOPA system

Wentao Wu, Xudong Li, Feng Mei, Deying Chen, and Renpeng Yan
Opt. Express 27(25) 36129-36136 (2019)

Dual-rod, 100 Hz, 388 mJ nanosecond Nd:YAG oscillator

Qiang Liu, Jianhui Liu, and Mali Gong
Appl. Opt. 50(8) 1186-1189 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  2. T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [Invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
    [Crossref]
  3. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  4. S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
    [Crossref]
  5. R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
    [Crossref] [PubMed]
  6. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
    [Crossref] [PubMed]
  7. T. Hosokai, T. Otsuka, Y. Sakai, J. Ogino, N. Pathak, A. Zhidkov, K. Sueda, H. Nakamura, Z. Jin, A. Ueno, H. Toran, Y. Tanizawa, R. Kodama, K. Huang, N. Nakanii, M. Mori, H. Kotaki, Y. Hayashi, I. Daito, Y. Miyasaka, T. Esirkepov, J. Koga, S. Bulanov, M. Kando, S. Masuda, and S. Yamamoto, “Status of ImPACT Program aiming for repeatable GeV-class LWFA,” International Conference on High Energy Density Science 2018 (HEDS 2018), HEDS3–2.
  8. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
    [Crossref] [PubMed]
  9. V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
    [Crossref] [PubMed]
  10. T. Taira, “Concept for measuring laser beam-quality parameters,” The Review of Laser Engineering 26(10), 723–729 (1998).
    [Crossref]
  11. A. Siegman, LASERS (University Science Books, 1986).
  12. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
    [Crossref]
  13. V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under (4)F(5/2) and (4)F(3/2) pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
    [Crossref] [PubMed]
  14. I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
    [Crossref]
  15. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
    [Crossref] [PubMed]
  16. K. G. Han and H. J. Kong, “Four-Pass Amplifier System Compensating Thermally Induced Birefringence Effect, Using a Novel Dumping Mechanism,” Jpn. J. Appl. Phys. 34(Part 2, No. 8A), L994–L996 (1995).
    [Crossref]
  17. L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
    [Crossref]
  18. A. F. Kornev, R. V. Balmashnov, I. G. Kuchma, A. S. Davtian, and D. O. Oborotov, “0.43 J/100 ps Nd:YAG laser with adaptive compensation of thermally induced lens,” Opt. Lett. 43(18), 4394–4397 (2018).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

2016 (1)

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
[Crossref]

2015 (2)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2011 (1)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2008 (1)

2007 (1)

I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
[Crossref]

2006 (1)

2001 (1)

1998 (1)

T. Taira, “Concept for measuring laser beam-quality parameters,” The Review of Laser Engineering 26(10), 723–729 (1998).
[Crossref]

1995 (1)

K. G. Han and H. J. Kong, “Four-Pass Amplifier System Compensating Thermally Induced Birefringence Effect, Using a Novel Dumping Mechanism,” Jpn. J. Appl. Phys. 34(Part 2, No. 8A), L994–L996 (1995).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Balmashnov, R. V.

Bhandari, R.

Davtian, A. S.

Dwayne Miller, R. J.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Fallahi, A.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Gupta, S. B.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
[Crossref]

Han, K. G.

K. G. Han and H. J. Kong, “Four-Pass Amplifier System Compensating Thermally Induced Birefringence Effect, Using a Novel Dumping Mechanism,” Jpn. J. Appl. Phys. 34(Part 2, No. 8A), L994–L996 (1995).
[Crossref]

Hayashi, S.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Hong, K.-H.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Huang, W. R.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Ikesue, A.

I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kärtner, F. X.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Kausas, A.

Kawase, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kong, H. J.

K. G. Han and H. J. Kong, “Four-Pass Amplifier System Compensating Thermally Induced Birefringence Effect, Using a Novel Dumping Mechanism,” Jpn. J. Appl. Phys. 34(Part 2, No. 8A), L994–L996 (1995).
[Crossref]

Kornev, A. F.

Kuchma, I. G.

Lupei, V.

Minamide, H.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Moriena, G.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Nanni, E. A.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Nawata, K.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Nishifuji, M.

O’Briant, S. A.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
[Crossref]

Oborotov, D. O.

Pavel, N.

Ravi, K.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Sakai, H.

Sato, Y.

Shikata, J.

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Shoji, I.

I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
[Crossref]

Suzuki, T.

Taira, T.

V. Yahia and T. Taira, “High brightness energetic pulses delivered by compact microchip-MOPA system,” Opt. Express 26(7), 8609–8618 (2018).
[Crossref] [PubMed]

L. Zheng, A. Kausas, and T. Taira, “Drastic thermal effects reduction through distributed face cooling in a high power giant-pulse tiny laser,” Opt. Mater. Express 7(9), 3214–3221 (2017).
[Crossref]

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
[Crossref]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

T. Taira, “Domain-controlled laser ceramics toward giant micro-photonics [Invited],” Opt. Mater. Express 1(5), 1040–1050 (2011).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
[Crossref]

Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14(22), 10528–10536 (2006).
[Crossref] [PubMed]

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under (4)F(5/2) and (4)F(3/2) pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref] [PubMed]

T. Taira, “Concept for measuring laser beam-quality parameters,” The Review of Laser Engineering 26(10), 723–729 (1998).
[Crossref]

Tsuji, N.

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Vasu, S. S.

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
[Crossref]

Yahia, V.

Zheng, L.

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High Peak Power, Passively Q-switched Microlaser for Ignition of Engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. G. Han and H. J. Kong, “Four-Pass Amplifier System Compensating Thermally Induced Birefringence Effect, Using a Novel Dumping Mechanism,” Jpn. J. Appl. Phys. 34(Part 2, No. 8A), L994–L996 (1995).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Dwayne Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

I. Shoji, T. Taira, and A. Ikesue, “Thermally-induced-birefringence effect of highly Nd3+-dopedY3Al5O12 ceramic lasers,” Opt. Mater. 29(10), 1271–1276 (2007).
[Crossref]

Opt. Mater. Express (3)

Propul. Power Res. (1)

S. A. O’Briant, S. B. Gupta, and S. S. Vasu, “Laser ignition for aerospace propulsion,” Propul. Power Res. 5(1), 1–21 (2016).
[Crossref]

Sci. Rep. (1)

S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4(1), 5045 (2015).
[Crossref] [PubMed]

The Review of Laser Engineering (1)

T. Taira, “Concept for measuring laser beam-quality parameters,” The Review of Laser Engineering 26(10), 723–729 (1998).
[Crossref]

Other (2)

A. Siegman, LASERS (University Science Books, 1986).

T. Hosokai, T. Otsuka, Y. Sakai, J. Ogino, N. Pathak, A. Zhidkov, K. Sueda, H. Nakamura, Z. Jin, A. Ueno, H. Toran, Y. Tanizawa, R. Kodama, K. Huang, N. Nakanii, M. Mori, H. Kotaki, Y. Hayashi, I. Daito, Y. Miyasaka, T. Esirkepov, J. Koga, S. Bulanov, M. Kando, S. Masuda, and S. Yamamoto, “Status of ImPACT Program aiming for repeatable GeV-class LWFA,” International Conference on High Energy Density Science 2018 (HEDS 2018), HEDS3–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Model to estimate thermal lensing. Optical system consists of an Nd:YAG-rod and two focal lenses. We used a CMOS camera and a Shack-Hartmann sensor as a detector to measure L.
Fig. 2
Fig. 2 Estimated focal length of the thermal lens induced in the Nd:YAG rod. (a) Delay time dependence of thermal lens effect. Delay time is the pumping time difference between Yb:YAG laser and Nd:YAG-rod. Δt = 0 is defined as the time that fluorescence intensity peak of Nd:YAG caused by pumping matches intensity peak of Yb:YAG laser. Thermal load at 2 Hz and 100Hz are 1.1 W and 56.6 W, respectively. (b) repetition rate dependence of thermal lens. The solid line shows the calculated value of fth from Eq. (4) and (6).
Fig. 3
Fig. 3 300 mm x 450 mm size high brightness Micro-MOPA optics for 100 Hz and PW/sr•cm2-class operation. (a) general view of the Micro-MOPA. (b) Detailed description of optical arrangement around the amplifier corresponding to the blue box of Fig. 3(a).
Fig. 4
Fig. 4 Effective pumping time dependence of output energy under 100 Hz operation. We fixed pumping pulse energy for Nd:YAG-rod to 1.5 J and changed effective pumping time by changing pumping timing.
Fig. 5
Fig. 5 Beam profile under 190 mJ and 100 Hz operation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B= P ( λ M 2 ) 2
q 2 = A q 1 ( w 1 , θ 1 )+B C q 1 ( w 1 , θ 1 )+D
[ A B C D ]=[ 1 L 0 1 ][ 1 0 1 f 2 1 ][ 1 z 3 0 1 ]V[ 1 z 2 0 1 ][ 1 0 1 f 1 1 ][ 1 z 1 0 1 ]
n(r)= n p0 1 2 n p1 r 2
V=[ 1 0 n p0 γtan(γ z amp ) 1 ][ cos(γ z amp ) ( n p0 γ) 1 tan(γ z amp ) 0 1 cos(γ z amp ) ]
f th = 1 n p0 γ cot( z amp γ )
η h =1 η p [ ( 1 η l ) η r λ p λ f + η l λ p λ l ]

Metrics