Abstract

We experimentally demonstrated high-speed diffuse line-of-sight optical wireless communication across a wavy water-air-interface. The testbed channel was evaluated, in terms of data rate, coverage and robustness to the dynamic wave movement, based on the performance of different modulation schemes, including non-return-to-zero on-off keying (NRZ-OOK) and quadrature amplitude modulation (QAM)-orthogonal frequency division multiplexing (OFDM). Under the emulated calm water condition, 8-QAM-OFDM offers a data rate of 111.4 Mbit/s at the aligned position, while only 55 Mbit/s is achieved using NRZ-OOK. On the other hand, effective communication can still be maintained at a high data rate of 11 Mbit/s when the photodetector is off aligned laterally by 5 cm based on NRZ-OOK modulation, leading to a coverage of ~79 cm2. By utilizing OFDM modulation scheme, a data rate of 30 Mbit/s can be achieved up to 2.5-cm misalignment, leading to a coverage of ~20 cm2. Furthermore, in the presence of strong waves (15-mm wave height, causing a scintillation index of 0.667), 4-QAM-OFDM modulation showed a better resilience to channel instability than NRZ-OOK modulation. Our studies pave the way for the eventual realization of communication across a challenging water-air interface without the need for an interface relay, which is much sought-after for implementing a robust and large-coverage underwater-to-terrestrial internet-of-things.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gbit/s ultraviolet-C diffuse-line-of-sight communication based on probabilistically shaped DMT and diversity reception

Omar Alkhazragi, Fangchen Hu, Peng Zou, Yinaer Ha, Chun Hong Kang, Yuan Mao, Tien Khee Ng, Nan Chi, and Boon S. Ooi
Opt. Express 28(7) 9111-9122 (2020)

Experimental demonstration of a two-path parallel scheme for m-QAM-OFDM transmission through a turbulent-air-water channel in optical wireless communications

Lu Zhang, Han Wang, Xu Zhao, Fang Lu, Xiaoming Zhao, and Xiaopeng Shao
Opt. Express 27(5) 6672-6688 (2019)

100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode

Jiemei Wang, Chunhui Lu, Shangbin Li, and Zhengyuan Xu
Opt. Express 27(9) 12171-12181 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
    [Crossref]
  2. K. P. Hunt, J. J. Niemeier, and A. Kruger, “RF communications in underwater wireless sensor networks,” in Proceedings of IEEE conference on Electro/Information Technology (IEEE, 2010), pp. 1–6.
  3. M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Oceanic Eng. 21(2), 125–136 (1996).
    [Crossref]
  4. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
    [Crossref] [PubMed]
  5. P. Lacovara, “High-Bandwidth Underwater Communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
    [Crossref]
  6. J. R. Wait, “Project Sanguine,” Science 178(4058), 272–275 (1972).
    [Crossref] [PubMed]
  7. W. Neubauer, Acoustic Reflection from Surfaces and Shapes (Naval Research Lab, 1986).
  8. J. J. Puschell, R. J. Giannaris, and L. Stotts, “The Autonomous Data Optical Relay Experiment: first two way laser communication between an aircraft and submarine,” in Proceedings of IEEE conference on NTC-92: National Telesystems (IEEE, 1992), pp. 14/27–14/30.
  9. M. Rhodes and D. Wolfe, “Underwater communications system comprising relay transceiver,” (Google Patents, 2011).
  10. F. Tonolini and F. Adib, “Networking across boundaries,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication - SIGCOMM ’18 (ACM, 2018), pp. 117–131.
    [Crossref]
  11. F. A. Blackmon, L. T. Antonelli, L. E. Estes, and G. Fain, “Laser-based acousto-optic uplink communications technique,” (Google Patents, 2005).
  12. N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical Modem Technology for Seafloor Observatories,” in Proceedings of IEEE conference on OCEANS (IEEE, 2006), pp. 1–6.
    [Crossref]
  13. J. Söderberg, “Free Space Optics in the Czech Wireless Community: Shedding Some Light on the Role of Normativity for User-Initiated Innovations,” Sci. Technol. Human Values 36(4), 423–450 (2011).
    [Crossref]
  14. Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
    [Crossref] [PubMed]
  15. A. Wang, L. Zhu, Y. Zhao, S. Li, W. Lv, J. Xu, and J. Wang, “Adaptive water-air-water data information transfer using orbital angular momentum,” Opt. Express 26(7), 8669–8678 (2018).
    [Crossref] [PubMed]
  16. X. Zhu and J. M. Kahn, “Free-Space Optical Communication Through Atmospheric Turbulence Channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
    [Crossref]
  17. O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
    [Crossref]
  18. M. S. Islam, M. Younis, and A. Ahmed, “Communication through Air Water Interface Using Multiple Light Sources,” in roceedings of IEEE conference on Communications (IEEE, 2018), pp. 1–6.
  19. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).
  20. H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in roceedings of IEEE conference on Underwater Communications and Networking Conference (IEEE, 2018), pp. 1–4.
    [Crossref]
  21. H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
    [Crossref]
  22. H. M. Oubei, E. Zedini, R. T. ElAfandy, A. Kammoun, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications,” in Proceedings of IEEE conference on Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), pp. 1–2.
    [Crossref]
  23. R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), 445.
  24. X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
    [Crossref] [PubMed]
  25. H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
    [Crossref]
  26. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
    [Crossref]
  27. Z. Xu and B. M. Sadler, “Ultraviolet Communications: Potential and State-Of-The-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
    [Crossref]
  28. X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
    [Crossref] [PubMed]
  29. X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
    [Crossref] [PubMed]
  30. L. C. Andrews, R. L. Phillips, and Society of Photo-optical Instrumentation Engineers, Laser Beam Propagation through Random Media (SPIE, 2005), 152.
  31. X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
    [Crossref]
  32. C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
    [Crossref] [PubMed]
  33. W. Niblack and E. Wolf, “Polarization Modulation and Demodulation of Light,” Appl. Opt. 3(2), 277 (1964).
    [Crossref]
  34. J. Grosinger, “Investigation of Polarization Modulation in Optical Free Space Communications through the Atmosphere,” Technical University of Vienna (2008).

2018 (3)

2017 (6)

X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
[Crossref] [PubMed]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

2015 (1)

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

2012 (1)

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
[Crossref]

2011 (1)

J. Söderberg, “Free Space Optics in the Czech Wireless Community: Shedding Some Light on the Role of Normativity for User-Initiated Innovations,” Sci. Technol. Human Values 36(4), 423–450 (2011).
[Crossref]

2008 (3)

F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47(2), 277–283 (2008).
[Crossref] [PubMed]

P. Lacovara, “High-Bandwidth Underwater Communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Z. Xu and B. M. Sadler, “Ultraviolet Communications: Potential and State-Of-The-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

2004 (1)

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
[Crossref]

2002 (2)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

X. Zhu and J. M. Kahn, “Free-Space Optical Communication Through Atmospheric Turbulence Channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

1996 (1)

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Oceanic Eng. 21(2), 125–136 (1996).
[Crossref]

1972 (1)

J. R. Wait, “Project Sanguine,” Science 178(4058), 272–275 (1972).
[Crossref] [PubMed]

1964 (1)

Adib, F.

F. Tonolini and F. Adib, “Networking across boundaries,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication - SIGCOMM ’18 (ACM, 2018), pp. 117–131.
[Crossref]

Ali, T.

Alkhazragi, O.

Alouini, M.-S.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
[Crossref] [PubMed]

X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
[Crossref] [PubMed]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Billmers, R.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Cai, W.

Chaaban, A.

Chen, D.-Y.

Chen, R.

Chen, S.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Chen, Y.

Cheng, J.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Cheng, M.-T.

Chi, N.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Concannon, B.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Cong, C.

Contarino, V.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Davis, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Deng, N.

Dong, Y.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

ElAfandy, R. T.

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Fang, Z.

Farwell, N.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
[Crossref]

Fu, S.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Guo, C.

Han, J.

Hanson, F.

He, H.

Ho, C.-M.

Hu, L.

Huang, X.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Kahn, J. M.

X. Zhu and J. M. Kahn, “Free-Space Optical Communication Through Atmospheric Turbulence Channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Kammoun, A.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Kang, C. H.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Khan, M. Z. M.

Kong, M.

Korotkova, O.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
[Crossref]

Lacovara, P.

P. Lacovara, “High-Bandwidth Underwater Communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Laux, A.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Li, C.-Y.

Li, J.

Li, S.

Li, X.

Liu, G.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Liu, R.

Liu, X.

Lu, H.-H.

Lv, W.

Maynard, J. A.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
[Crossref]

Moriarty, D. T.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
[Crossref]

Mullen, L.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Ng, T. K.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
[Crossref] [PubMed]

X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
[Crossref] [PubMed]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Niblack, W.

Ooi, B. S.

X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
[Crossref] [PubMed]

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
[Crossref] [PubMed]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Ooi, E.-N.

Oubei, H. M.

X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
[Crossref] [PubMed]

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Park, K.-H.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

Prentice, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Qiu, Z.-J.

Radic, S.

Reilly, D. M.

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
[Crossref]

Sadler, B. M.

Z. Xu and B. M. Sadler, “Ultraviolet Communications: Potential and State-Of-The-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Sarwar, R.

Shchepakina, E.

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
[Crossref]

Shen, C.

Shi, J.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Söderberg, J.

J. Söderberg, “Free Space Optics in the Czech Wireless Community: Shedding Some Light on the Role of Normativity for User-Initiated Innovations,” Sci. Technol. Human Values 36(4), 423–450 (2011).
[Crossref]

Stojanovic, M.

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Oceanic Eng. 21(2), 125–136 (1996).
[Crossref]

Sun, B.

Sun, H.

Sun, X.

Tian, P.

Tonolini, F.

F. Tonolini and F. Adib, “Networking across boundaries,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication - SIGCOMM ’18 (ACM, 2018), pp. 117–131.
[Crossref]

Tsai, W.-S.

Wait, J. R.

J. R. Wait, “Project Sanguine,” Science 178(4058), 272–275 (1972).
[Crossref] [PubMed]

Wang, A.

Wang, J.

Wang, Y.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Wang, Y.-C.

Wang, Z.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Wolf, E.

Xiao, J.

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

Xu, J.

Xu, Z.

Z. Xu and B. M. Sadler, “Ultraviolet Communications: Potential and State-Of-The-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

Yan, J.

Yang, Z.-Y.

Yi, S.

Zedini, E.

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Zeng, Z.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, H.

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

Zhang, Z.

Zhao, Y.

Zheng, L.

Zhou, X.

Zhu, L.

Zhu, X.

X. Zhu and J. M. Kahn, “Free-Space Optical Communication Through Atmospheric Turbulence Channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

Appl. Opt. (2)

IEEE Comm. Surv. and Tutor. (1)

Z. Zeng, S. Fu, H. Zhang, Y. Dong, and J. Cheng, “A Survey of Underwater Optical Wireless Communications,” IEEE Comm. Surv. and Tutor. 19(1), 204–238 (2017).
[Crossref]

IEEE Commun. Mag. (1)

Z. Xu and B. M. Sadler, “Ultraviolet Communications: Potential and State-Of-The-Art,” IEEE Commun. Mag. 46(5), 67–73 (2008).
[Crossref]

IEEE J. Oceanic Eng. (1)

M. Stojanovic, “Recent advances in high-speed underwater acoustic communications,” IEEE J. Oceanic Eng. 21(2), 125–136 (1996).
[Crossref]

IEEE Photonics J. (2)

H. M. Oubei, R. T. ElAfandy, K.-H. Park, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations,” IEEE Photonics J. 9(2), 1–9 (2017).
[Crossref]

X. Huang, S. Chen, Z. Wang, J. Shi, Y. Wang, J. Xiao, and N. Chi, “2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED,” IEEE Photonics J. 7(5), 1–8 (2015).
[Crossref]

IEEE Trans. Commun. (1)

X. Zhu and J. M. Kahn, “Free-Space Optical Communication Through Atmospheric Turbulence Channels,” IEEE Trans. Commun. 50(8), 1293–1300 (2002).
[Crossref]

J. Mod. Opt. (1)

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, c s of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49(3–4), 439–451 (2002).

Jpn. J. Appl. Phys. (1)

H. M. Oubei, C. Shen, A. Kammoun, E. Zedini, K.-H. Park, X. Sun, G. Liu, C. H. Kang, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Light based underwater wireless communications,” Jpn. J. Appl. Phys. 57(8S2), 08PA06 (2018).
[Crossref]

Mar. Technol. Soc. J. (1)

P. Lacovara, “High-Bandwidth Underwater Communications,” Mar. Technol. Soc. J. 42(1), 93–102 (2008).
[Crossref]

Opt. Express (6)

Y. Chen, M. Kong, T. Ali, J. Wang, R. Sarwar, J. Han, C. Guo, B. Sun, N. Deng, and J. Xu, “26 m/5.5 Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode,” Opt. Express 25(13), 14760–14765 (2017).
[Crossref] [PubMed]

A. Wang, L. Zhu, Y. Zhao, S. Li, W. Lv, J. Xu, and J. Wang, “Adaptive water-air-water data information transfer using orbital angular momentum,” Opt. Express 26(7), 8669–8678 (2018).
[Crossref] [PubMed]

C.-Y. Li, H.-H. Lu, W.-S. Tsai, M.-T. Cheng, C.-M. Ho, Y.-C. Wang, Z.-Y. Yang, and D.-Y. Chen, “16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques,” Opt. Express 25(10), 11598–11605 (2017).
[Crossref] [PubMed]

X. Liu, S. Yi, X. Zhou, Z. Fang, Z.-J. Qiu, L. Hu, C. Cong, L. Zheng, R. Liu, and P. Tian, “34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation,” Opt. Express 25(22), 27937–27947 (2017).
[Crossref] [PubMed]

X. Sun, W. Cai, O. Alkhazragi, E.-N. Ooi, H. He, A. Chaaban, C. Shen, H. M. Oubei, M. Z. M. Khan, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “375-nm ultraviolet-laser based non-line-of-sight underwater optical communication,” Opt. Express 26(10), 12870–12877 (2018).
[Crossref] [PubMed]

X. Sun, Z. Zhang, A. Chaaban, T. K. Ng, C. Shen, R. Chen, J. Yan, H. Sun, X. Li, J. Wang, J. Li, M.-S. Alouini, and B. S. Ooi, “71-Mbit/s ultraviolet-B LED communication link based on 8-QAM-OFDM modulation,” Opt. Express 25(19), 23267–23274 (2017).
[Crossref] [PubMed]

Proc. SPIE (1)

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, “Unique properties of solar blind ultraviolet communication systems for unattended ground-sensor networks,” Proc. SPIE 5611, 244–255 (2004).
[Crossref]

Sci. Technol. Human Values (1)

J. Söderberg, “Free Space Optics in the Czech Wireless Community: Shedding Some Light on the Role of Normativity for User-Initiated Innovations,” Sci. Technol. Human Values 36(4), 423–450 (2011).
[Crossref]

Science (1)

J. R. Wait, “Project Sanguine,” Science 178(4058), 272–275 (1972).
[Crossref] [PubMed]

Wave Random Complex (1)

O. Korotkova, N. Farwell, and E. Shchepakina, “Light scintillation in oceanic turbulence,” Wave Random Complex 22(2), 260–266 (2012).
[Crossref]

Other (13)

M. S. Islam, M. Younis, and A. Ahmed, “Communication through Air Water Interface Using Multiple Light Sources,” in roceedings of IEEE conference on Communications (IEEE, 2018), pp. 1–6.

K. P. Hunt, J. J. Niemeier, and A. Kruger, “RF communications in underwater wireless sensor networks,” in Proceedings of IEEE conference on Electro/Information Technology (IEEE, 2010), pp. 1–6.

W. Neubauer, Acoustic Reflection from Surfaces and Shapes (Naval Research Lab, 1986).

J. J. Puschell, R. J. Giannaris, and L. Stotts, “The Autonomous Data Optical Relay Experiment: first two way laser communication between an aircraft and submarine,” in Proceedings of IEEE conference on NTC-92: National Telesystems (IEEE, 1992), pp. 14/27–14/30.

M. Rhodes and D. Wolfe, “Underwater communications system comprising relay transceiver,” (Google Patents, 2011).

F. Tonolini and F. Adib, “Networking across boundaries,” in Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication - SIGCOMM ’18 (ACM, 2018), pp. 117–131.
[Crossref]

F. A. Blackmon, L. T. Antonelli, L. E. Estes, and G. Fain, “Laser-based acousto-optic uplink communications technique,” (Google Patents, 2005).

N. Farr, A. D. Chave, L. Freitag, J. Preisig, S. N. White, D. Yoerger, and F. Sonnichsen, “Optical Modem Technology for Seafloor Observatories,” in Proceedings of IEEE conference on OCEANS (IEEE, 2006), pp. 1–6.
[Crossref]

J. Grosinger, “Investigation of Polarization Modulation in Optical Free Space Communications through the Atmosphere,” Technical University of Vienna (2008).

L. C. Andrews, R. L. Phillips, and Society of Photo-optical Instrumentation Engineers, Laser Beam Propagation through Random Media (SPIE, 2005), 152.

H. M. Oubei, X. Sun, T. K. Ng, O. Alkhazragi, M.-S. Alouini, and S. Boon Ooi, “Scintillations of RGB laser beams in weak temperature and salinity-induced oceanic turbulence,” in roceedings of IEEE conference on Underwater Communications and Networking Conference (IEEE, 2018), pp. 1–4.
[Crossref]

H. M. Oubei, E. Zedini, R. T. ElAfandy, A. Kammoun, T. K. Ng, M.-S. Alouini, and B. S. Ooi, “Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications,” in Proceedings of IEEE conference on Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC) (IEEE, 2017), pp. 1–2.
[Crossref]

R. M. Gagliardi and S. Karp, Optical Communications (Wiley, 1976), 445.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The illustration of signaling and activities underwater for data transmissions from underwater platforms to airborne, terrestrial and space platforms. Communication techniques having high data rate, large coverage, and robustness to dynamic waves movement are essential for future internet-of-things (IoT) and internet-of-underwater-things (IoUT).
Fig. 2
Fig. 2 Photo of experimental setup across water-air interface for diffuse-LOS communications, and the OFDM modulation processes.
Fig. 3
Fig. 3 Beam shape and power distribution of the LED source as recorded using Ophir-Spiricon beam profiler.
Fig. 4
Fig. 4 (a) Received power in the air at 0.6 m above the water surface along the lateral direction from the aligned position (X-position = 0 cm) to off-aligned positions (X-position > 0 cm). (b) Power distribution extended to all directions in the air at 0.6 m above the water surface.
Fig. 5
Fig. 5 Small-signal frequency response of the water-air channel. Dashed line indicates −3 dB/-10 dB bandwidth, which is approximately 16 MHz and 43 MHz, respectively.
Fig. 6
Fig. 6 (a)–(f) Eye diagrams at aligned position for data rates achieved by NRZ-OOK of 23 Mbit/s, 33 Mbit/s, 43 Mbit/s, 50 Mbit/s, and 53 Mbit/s, respectively. (g) BERs vs. NRZ-OOK data rate at the aligned position to misaligned positions, i.e. X-position = 0, 2.5 cm, 5 cm. (h) The effective NRZ-OOK communication coverage area and communication blind area.
Fig. 7
Fig. 7 (a) The waveform of captured 8-QAM-OFDM signal in time domain, and (b) the corresponding electrical spectrum of 8-QAM-OFDM with an occupied signal bandwidth of 41.5 MHz.
Fig. 8
Fig. 8 (a)–(c) Constellations for 8-QAM-OFDM signals with net data rates of 91.8, 98.3, and 111.4 Mbit/s at aligned position. (d)–(f) Constellations for 4-QAM-OFDM signals with net data rates of 26.2, 28.4, and 30.2 Mbit/s at X-position = 2.5 cm.
Fig. 9
Fig. 9 (a) BER vs. data rate at different positions using OFDM when APD scans from the aligned position to off-center position. (b) The effective OFDM communication area.
Fig. 10
Fig. 10 Two waves generated in study with wave heights of (a) 5 mm and (b) 15 mm.
Fig. 11
Fig. 11 Collected intensity of received signal during period of 100 s under: (a) weak wave and (b) strong wave. Histogram of normalized received intensity indicating scintillation index for: (c) weak wave and (d) strong wave.
Fig. 12
Fig. 12 Recorded 8-QAM-OFDM signals in the presence of surface waves with varying degrees of amplitude fluctuation: (a) small signal-amplitude, (b) medium signal-amplitude, and (c) large signal-amplitude. Mean BER of each subcarriers for signals with different amplitudes for 8-QAM-OFDM signals: (d) 3.532 × 10−3 for small-signal amplitude, (e) 1.643 × 10−3 for medium signal-amplitude, and (f) 4.788 × 10−4 for large-signal amplitude.
Fig. 13
Fig. 13 Measured BERs vs. data rates for: (a) 4-QAM-OFDM and (b) 8-QAM-OFDM. (c) NRZ-OOK in the presence of weak waves. Insets are eye diagrams for data rates of: (i) 53 Mbit/s, (ii) 50 Mbit/s, and (iii) 45 Mbit/s.
Fig. 14
Fig. 14 Summary of the highest data rates achieved for three modulation schemes under calm water, water with weak waves and water with strong waves.

Tables (1)

Tables Icon

Table 1 Approaches in across water-air-interface communication

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ I 2 = I 2 I 2 I 2 = I 2 I 2 ,

Metrics