Abstract

We discuss how to realize rigorous single pulse imaging using a fiber mode-locked laser for the purpose of ultrafast interferometric observation of fast varying dynamic objects. Sub-picosecond pulses are readily picked up in synchronization with the camera operation, allocating one pulse per frame, but rigorous ultrashort single pulse imaging is disturbed by the accumulation of amplified spontaneous emission (ASE) over the exposure time of the camera. Here, we propose four distinct methods to eliminate the ASE-accumulated disruption in the ultrashort optical gating by pulse interferometry and then evaluate their merits and limitations individually by experiments. The proposed four methods are referred to respectively as the time averaged phase modulation, unbalanced pulse overlapping, tandem pulse picking, and second harmonic generation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses

Sarang Yeola, Donghoon Kuk, and Ki-Yong Kim
J. Opt. Soc. Am. B 35(11) 2822-2827 (2018)

Experimental time-resolved imaging by multiplexed ptychography

Omri Wengrowicz, Or Peleg, Barry Loevsky, Bing Kuan Chen, Gil Ilan Haham, U. Satya Sainadh, and Oren Cohen
Opt. Express 27(17) 24568-24577 (2019)

Single-shot ultrafast optical imaging

Jinyang Liang and Lihong V. Wang
Optica 5(9) 1113-1127 (2018)

References

  • View by:
  • |
  • |
  • |

  1. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [Crossref] [PubMed]
  2. C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [Crossref] [PubMed]
  3. M. Eisner, N. Lindlein, and J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23(10), 748–749 (1998).
    [Crossref] [PubMed]
  4. M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
    [Crossref] [PubMed]
  5. C. Dunsby, Y. Gu, and P. French, “Single-shot phase-stepped wide-field coherencegated imaging,” Opt. Express 11(2), 105–115 (2003).
    [Crossref] [PubMed]
  6. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  7. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
    [Crossref] [PubMed]
  8. G. Rodriguez-Zurita, C. Meneses-Fabian, N. I. Toto-Arellano, J. F. Vázquez-Castillo, and C. Robledo-Sánchez, “One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16(11), 7806–7817 (2008).
    [Crossref] [PubMed]
  9. J. Hult, M. Richter, J. Nygren, M. Aldén, A. Hultqvist, M. Christensen, and B. Johansson, “Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines,” Appl. Opt. 41(24), 5002–5014 (2002).
    [Crossref] [PubMed]
  10. A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
    [Crossref]
  11. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
    [Crossref]
  12. D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
    [Crossref] [PubMed]
  13. M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
    [Crossref] [PubMed]
  14. I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22(26), 31746–31760 (2014).
    [Crossref] [PubMed]
  15. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  16. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “Molecular contrast in optical coherence tomography by use of a pump-probe technique,” Opt. Lett. 28(5), 340–342 (2003).
    [Crossref] [PubMed]
  17. C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
    [Crossref]
  18. K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
    [Crossref]
  19. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [Crossref] [PubMed]
  20. K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
    [Crossref]
  21. S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
    [Crossref] [PubMed]
  22. R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86(1), 011113 (2005).
    [Crossref]
  23. W. D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
    [Crossref] [PubMed]
  24. M. Takeda and K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shapes,” Appl. Opt. 22(24), 3977–3982 (1983).
    [Crossref] [PubMed]

2016 (1)

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

2014 (2)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22(26), 31746–31760 (2014).
[Crossref] [PubMed]

2013 (2)

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

W. D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
[Crossref] [PubMed]

2009 (3)

2008 (2)

2007 (1)

2006 (1)

2005 (2)

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86(1), 011113 (2005).
[Crossref]

2003 (4)

2002 (1)

1999 (1)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

1998 (1)

1994 (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

1993 (1)

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

1983 (1)

Aldén, M.

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Beane, G. L.

Bewersdorf, J.

Borowiec, A.

A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
[Crossref]

Bouchard, M. B.

Bouma, B.

Bruce, D. M.

A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
[Crossref]

Burgess, S. A.

Cassidy, D. T.

A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
[Crossref]

Chen, B. R.

Chen, Y. C.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Choi, H. K.

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

Choma, M. A.

Christensen, M.

Cowan, T. E.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Crommie, M. F.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

de Boer, J.

de Oteyza, D. G.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Ditmire, T.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Dunsby, C.

Eisner, M.

Etkin, G.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Fischer, F. R.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

French, P.

Fujimoto, J. G.

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

Goda, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Gorman, P.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Grulkowski, I.

Gu, Y.

Haugen, H. K.

A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
[Crossref]

Hays, G.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Hein, J.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Herda, R.

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86(1), 011113 (2005).
[Crossref]

Hillman, E. M.

Hirosawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Horisaki, R.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Hornung, M.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Hult, J.

Hultqvist, A.

Iftimia, N.

Iwasaki, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Izatt, J. A.

Jalali, B.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Johansson, B.

Joo, K.-N.

Joo, W. D.

Juette, M. F.

Kaluza, M. C.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Kannari, F.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Keppler, S.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Kim, M.

Kim, S.

Kim, S.-W.

Kim, Y.-J.

Körner, J.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Lee, J.

Lee, K.

Liao, H.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Liebetrau, H.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Lindlein, N.

Lo, C. M.

Mann, C.

Matsumoto, H.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

Meneses-Fabian, C.

Minoshima, K.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

Mlodzianoski, M. J.

Mowbray, D. J.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Mutoh, K.

Nakagawa, K.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nakamura, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nygren, J.

Oishi, Y.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86(1), 011113 (2005).
[Crossref]

Park, J.

Pedramrazi, Z.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Rao, K. D.

Richter, M.

Riss, A.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Robledo-Sánchez, C.

Rodriguez-Zurita, G.

Rollins, A. M.

Rubio, A.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Sakuma, I.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Sävert, A.

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Schwider, J.

Sun, C. K.

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

Szulzycki, K.

Takeda, M.

Tearney, G.

Toto-Arellano, N. I.

Tsai, H.-Z.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Tsia, K. K.

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

Tsukamoto, A.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Ushida, T.

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Vázquez-Castillo, J. F.

Wang, C. A.

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Wharton, K. B.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Wickenburg, S.

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

Wojtkowski, M.

Xiang, L. Z.

Xing, D.

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

Yang, D. W.

Yang, S. H.

Yanovsky, V. P.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Yazdanfar, S.

Yu, L.

Yun, S.

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Zweiback, J.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86(1), 011113 (2005).
[Crossref]

A. Borowiec, D. M. Bruce, D. T. Cassidy, and H. K. Haugen, “Imaging the strain fields resulting from laser micromachining of semiconductors,” Appl. Phys. Lett. 83(2), 225–227 (2003).
[Crossref]

C. K. Sun, H. K. Choi, C. A. Wang, and J. G. Fujimoto, “Studies of carrier heating in InGaAs/AlGaAs strained‐layer quantum well diode lasers using a multiple wavelength pump probe technique,” Appl. Phys. Lett. 62(7), 747–749 (1993).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D Imaging Using Chirped Ultrashort Optical Pulses,” Jpn. J. Appl. Phys. 33(29B), L1348–L1351 (1994).
[Crossref]

Laser Photonics Rev. (1)

S. Keppler, A. Sävert, J. Körner, M. Hornung, H. Liebetrau, J. Hein, and M. C. Kaluza, “The generation of amplified spontaneous emission in high-power CPA laser systems,” Laser Photonics Rev. 10(2), 264–277 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

K. Nakagawa, A. Iwasaki, Y. Oishi, R. Horisaki, A. Tsukamoto, A. Nakamura, K. Hirosawa, H. Liao, T. Ushida, K. Goda, F. Kannari, and I. Sakuma, “Sequentially timed all-optical mapping photography (STAMP),” Nat. Photonics 8(9), 695–700 (2014).
[Crossref]

Nature (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[Crossref] [PubMed]

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B. Wharton, “Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters,” Nature 398(6727), 489–492 (1999).
[Crossref]

Opt. Express (10)

M. J. Mlodzianoski, M. F. Juette, G. L. Beane, and J. Bewersdorf, “Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy,” Opt. Express 17(10), 8264–8277 (2009).
[Crossref] [PubMed]

C. Dunsby, Y. Gu, and P. French, “Single-shot phase-stepped wide-field coherencegated imaging,” Opt. Express 11(2), 105–115 (2003).
[Crossref] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
[Crossref] [PubMed]

D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express 15(23), 15566–15575 (2007).
[Crossref] [PubMed]

G. Rodriguez-Zurita, C. Meneses-Fabian, N. I. Toto-Arellano, J. F. Vázquez-Castillo, and C. Robledo-Sánchez, “One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms,” Opt. Express 16(11), 7806–7817 (2008).
[Crossref] [PubMed]

C. Mann, L. Yu, C. M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[Crossref] [PubMed]

M. B. Bouchard, B. R. Chen, S. A. Burgess, and E. M. Hillman, “Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics,” Opt. Express 17(18), 15670–15678 (2009).
[Crossref] [PubMed]

I. Grulkowski, K. Szulzycki, and M. Wojtkowski, “Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination,” Opt. Express 22(26), 31746–31760 (2014).
[Crossref] [PubMed]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

W. D. Joo, S. Kim, J. Park, K. Lee, J. Lee, S. Kim, Y.-J. Kim, and S.-W. Kim, “Femtosecond laser pulses for fast 3-D surface profilometry of microelectronic step-structures,” Opt. Express 21(13), 15323–15334 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Science (2)

D. G. de Oteyza, P. Gorman, Y. C. Chen, S. Wickenburg, A. Riss, D. J. Mowbray, G. Etkin, Z. Pedramrazi, H.-Z. Tsai, A. Rubio, M. F. Crommie, and F. R. Fischer, “Direct imaging of covalent bond structure in single-molecule chemical reactions,” Science 340(6139), 1434–1437 (2013).
[Crossref] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Twyman-Green type interferometer setup to observe the amplified spontaneous emission (ASE) effect on single-pulse imaging. M: mirror, CL: collimating lens, BS: beam splitter, IL: imaging lens. (b) Interferometric fringe formed by a single pulse with ASE. The pulse duration is 100 fs while the camera exposure time τexp for a single frame is 500 nm. (c) interferometric fringe formed by ASE only.
Fig. 2
Fig. 2 Optical configurations of four distinct ways of suppressing the effect of amplified spontaneous emission (ASE) on ultrafast single pulse imaging. (a) Time averaged phase modulation. (b) Unbalanced pulse overlapping. (c) Tandem pulse picking. (d) Second harmonic generation (SHG). AOPP: acoustic-optic pulse picker, AMP: amplifier, EOM: electro-optical modulator, and other interferometer-related symbols are the same as depicted in Fig. 1.
Fig. 3
Fig. 3 Static and dynamic interferometric measurements of a thin-film pellicle. (a) Static interferograms measured using a super-luminescent diode (SLD) and a single Q-switched pulse extracted by tandem pulse picking. (b) Dynamic interferograms measured using the same SLD and pulse with the pellicle in vibratory motion.
Fig. 4
Fig. 4 Surface profile variations of the pellicle plate by a sound wave applied at 600 Hz.
Fig. 5
Fig. 5 Interferometric fringes with only ASE or single pulse. (a&b) Time averaged phase modulation. (c&d) Unbalanced pulse overlapping. (e&f) Tandem pulse picking. (g&h) Second harmonic generation.
Fig. 6
Fig. 6 Unbalanced pulse overlapping with a very long delay line to improve the fringe contrast by more effective suppression of the ASE temporal noise.

Tables (1)

Tables Icon

Table 1 Summary of fringe contrast and background intensity for four single pulse imaging methods

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I= I A + I p
I A = <αcos[ϕ+ a p cos(2πft)] > τ exp
I P =<βcos[ϕ+ a p cos( 2πft )] > τ p
I P =βcos[ϕ+ a p cos( 2πf τ p )]βcosϕ
I T = I a,r + I a,m + I b,r + I b,m + I inter + I ASE
P 0 = γ I 2

Metrics