Abstract

The recent development of liquid-phase chemical analyses, drug delivery, and flow cytometry requires precise sensing and control of the liquid flow in a microfluidic chip environment. The channel in microfluidic chips is getting narrower to cope with complex liquid controls on a single chip, where small-footprint sensors and actuators are in urgent demand for accurate flow management. In this study, a unique microscopic bubble-on-fiber (BoF) device that can be readily integrated to current microfluidic chips was proposed and demonstrated for in situ sensing and control of microfluidic flow rate. The single microbubble was optically generated on the gold-deposited facet of an optical fiber by the local heating due to optical absorption. The BoF is a microscopic Fabry-Perot cavity, which serves as a thermal flow sensor precisely detecting the flow-induced temperature changes in the optical frequency domain. Experimentally we achieved the minimum detectable flow rate of ~0.06 mm/s in a single microfluidic channel, which is equivalent to a volume flow rate of 22 nL/s, and a response time of ~6 s. We also demonstrated that the BoF functioned as a microfluidic valve to regulate the flow rate in a Y-shape microfluidic chip by optically varying the bubble diameter. In addition to advantages of highly integrated functionalities and microscopic form factor, the proposed BoF can obviate the usage of chemical tracer such as dyes and can provide a high sensitivity over repeated flow cycles in a highly consistent manner. The BoF is promising for the timely development of high-density lab-on-a-chip devices using its efficient liquid flow management capability.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements

Hongsong Xu, Guanyu Wang, Jun Ma, Long Jin, Kyunghwan Oh, and Bai-ou Guan
Opt. Express 26(9) 11976-11983 (2018)

Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer

Ying Li, Guofeng Yan, Liang Zhang, and Sailing He
Opt. Express 23(7) 9483-9493 (2015)

Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman
Opt. Express 17(14) 11719-11729 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
    [Crossref] [PubMed]
  2. D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
    [Crossref] [PubMed]
  3. C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
    [Crossref] [PubMed]
  4. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [Crossref] [PubMed]
  5. A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
    [Crossref] [PubMed]
  6. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
    [Crossref] [PubMed]
  7. H. Chen and J.-C. Meiners, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett. 84(12), 2193–2195 (2004).
    [Crossref]
  8. K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
    [Crossref] [PubMed]
  9. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
    [Crossref] [PubMed]
  10. R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
    [Crossref]
  11. J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16(8), 080901 (2011).
    [Crossref] [PubMed]
  12. J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
    [Crossref]
  13. L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
    [Crossref]
  14. V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
    [Crossref] [PubMed]
  15. S.-C. Yan, Z.-Y. Liu, C. Li, S.-J. Ge, F. Xu, and Y.-Q. Lu, ““Hot-wire” microfluidic flowmeter based on a microfiber coupler,” Opt. Lett. 41(24), 5680–5683 (2016).
    [Crossref] [PubMed]
  16. Y. Li, G. Yan, L. Zhang, and S. He, “Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer,” Opt. Express 23(7), 9483–9493 (2015).
    [Crossref] [PubMed]
  17. A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
    [Crossref]
  18. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  19. A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
    [Crossref] [PubMed]
  20. D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
    [Crossref] [PubMed]
  21. A. Oskooei and A. Günther, “Bubble pump: scalable strategy for in-plane liquid routing,” Lab Chip 15(13), 2842–2853 (2015).
    [Crossref] [PubMed]
  22. S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
    [Crossref] [PubMed]
  23. K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
    [Crossref] [PubMed]
  24. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
    [Crossref]
  25. H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
    [Crossref]
  26. H. Xu, G. Wang, J. Ma, L. Jin, K. Oh, and B.-O. Guan, “Bubble-on-fiber (BoF): a built-in tunable broadband acousto-optic sensor for liquid-immersible in situ measurements,” Opt. Express 26(9), 11976–11983 (2018).
    [Crossref] [PubMed]
  27. X. Wang, J. Xu, Y. Zhu, K. L. Cooper, and A. Wang, “All-fused-silica miniature optical fiber tip pressure sensor,” Opt. Lett. 31(7), 885–887 (2006).
    [Crossref] [PubMed]
  28. R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
    [Crossref]
  29. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  30. S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
    [Crossref] [PubMed]
  31. D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
    [Crossref] [PubMed]
  32. W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
    [Crossref] [PubMed]

2018 (1)

2016 (1)

2015 (3)

Y. Li, G. Yan, L. Zhang, and S. He, “Microfluidic flowmeter based on micro “hot-wire” sandwiched Fabry-Perot interferometer,” Opt. Express 23(7), 9483–9493 (2015).
[Crossref] [PubMed]

A. Oskooei and A. Günther, “Bubble pump: scalable strategy for in-plane liquid routing,” Lab Chip 15(13), 2842–2853 (2015).
[Crossref] [PubMed]

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

2014 (2)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

2013 (4)

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
[Crossref] [PubMed]

2012 (1)

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
[Crossref]

2011 (2)

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16(8), 080901 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

2010 (1)

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

2009 (2)

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

2007 (3)

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (3)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

H. Chen and J.-C. Meiners, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett. 84(12), 2193–2195 (2004).
[Crossref]

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

2003 (1)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

2002 (4)

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

2000 (1)

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

1998 (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Abolhasani, M.

A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
[Crossref] [PubMed]

Adrian, R. J.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Ahmed, D.

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

Albloushi, H.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Almansouri, A.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Antony, R.

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

Bachman, M.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Beebe, D. J.

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Bejarano-Nosas, D.

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Casadevall i Solvas, X.

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

Chen, H.

H. Chen and J.-C. Meiners, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett. 84(12), 2193–2195 (2004).
[Crossref]

Chin, C. D.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Chopra, H. D.

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

Chou, H.-P.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Cooper, K. L.

deMello, A. J.

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

Elvira, K. S.

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

Freitag, R.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Ge, S.-J.

Gu, M.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16(8), 080901 (2011).
[Crossref] [PubMed]

Guan, B.-O.

Günther, A.

A. Oskooei and A. Günther, “Bubble pump: scalable strategy for in-plane liquid routing,” Lab Chip 15(13), 2842–2853 (2015).
[Crossref] [PubMed]

A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
[Crossref] [PubMed]

Haeberle, S.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

He, S.

Hnatovsky, C.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

Hua, S. Z.

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

Huang, T. J.

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jin, L.

Juluri, B. K.

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

Kalantar-zadeh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Katakis, I.

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Khoshmanesh, K.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Kuo, J. T. W.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
[Crossref]

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Li, C.

Li, D.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Li, G.-P.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Li, Y.

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Lien, V.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

Linder, V.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Liu, Z.-Y.

Lozano-Sanchez, P.

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Lu, Y.-Q.

Ma, J.

Mao, X.

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

Mark, D.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

Marr, D. W.

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

Meiners, J.-C.

H. Chen and J.-C. Meiners, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett. 84(12), 2193–2195 (2004).
[Crossref]

Meinhart, C. D.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Meng, E.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
[Crossref]

Mensing, G. A.

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Nandagopal, M. S. G.

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Oakey, J.

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

Oh, K.

Oskooei, A.

A. Oskooei and A. Günther, “Bubble pump: scalable strategy for in-plane liquid routing,” Lab Chip 15(13), 2842–2853 (2015).
[Crossref] [PubMed]

A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
[Crossref] [PubMed]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Quake, S. R.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Reichert, J.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Roberts, R. C.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Roth, G.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

Sachs, F.

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

Santiago, J. G.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Scherer, A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Selvaraju, N.

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

Shi, J.

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

Sia, S. K.

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

Soffe, R.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Sreekumar, N.

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

Szekely, L.

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Tam, H.-Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Taylor, R. S.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

Teixeira-Dias, B.

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Terray, A.

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

Thorsen, T.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Tien, N. C.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Unger, M. A.

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Vollmer, F.

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

von Stetten, F.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

Walker, G. M.

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

Wang, A.

Wang, G.

Wang, X.

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Washe, A. P.

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Wereley, S. T.

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

Wootton, R. C.

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

Wu, J.

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16(8), 080901 (2011).
[Crossref] [PubMed]

Wu, L. L.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Xu, F.

Xu, H.

Xu, J.

Xu, K.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Xu, W.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Xue, H.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Yan, G.

Yan, S.-C.

Yang, D. X.

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

Yi, P.

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Yu, H.

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Yu, L.

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
[Crossref]

Zengerle, R.

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, Y.

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Zhu, Y.

Anal. Chem. (1)

S. Z. Hua, F. Sachs, D. X. Yang, and H. D. Chopra, “Microfluidic actuation using electrochemically generated bubbles,” Anal. Chem. 74(24), 6392–6396 (2002).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: a review,” Anal. Chim. Acta 601(2), 141–155 (2007).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (2)

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng. 4(1), 261–286 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

H. Chen and J.-C. Meiners, “Topologic mixing on a microfluidic chip,” Appl. Phys. Lett. 84(12), 2193–2195 (2004).
[Crossref]

Chem. Soc. Rev. (1)

D. Mark, S. Haeberle, G. Roth, F. von Stetten, and R. Zengerle, “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chem. Soc. Rev. 39(3), 1153–1182 (2010).
[Crossref] [PubMed]

Electrophoresis (1)

S. K. Sia and G. M. Whitesides, “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis 24(21), 3563–3576 (2003).
[Crossref] [PubMed]

Exp. Fluids (1)

J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids 25(4), 316–319 (1998).
[Crossref]

J. Appl. Phys. (1)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

J. Biomed. Opt. (1)

J. Wu and M. Gu, “Microfluidic sensing: state of the art fabrication and detection techniques,” J. Biomed. Opt. 16(8), 080901 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw Illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Lab Chip (6)

V. Lien and F. Vollmer, “Microfluidic flow rate detection based on integrated optical fiber cantilever,” Lab Chip 7(10), 1352–1356 (2007).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

A. Oskooei, M. Abolhasani, and A. Günther, “Bubble gate for in-plane flow control,” Lab Chip 13(13), 2519–2527 (2013).
[Crossref] [PubMed]

D. Ahmed, X. Mao, J. Shi, B. K. Juluri, and T. J. Huang, “A millisecond micromixer via single-bubble-based acoustic streaming,” Lab Chip 9(18), 2738–2741 (2009).
[Crossref] [PubMed]

A. Oskooei and A. Günther, “Bubble pump: scalable strategy for in-plane liquid routing,” Lab Chip 15(13), 2842–2853 (2015).
[Crossref] [PubMed]

C. D. Chin, V. Linder, and S. K. Sia, “Lab-on-a-chip devices for global health: past studies and future opportunities,” Lab Chip 7(1), 41–57 (2007).
[Crossref] [PubMed]

Microelectron. Eng. (1)

A. P. Washe, P. Lozano-Sanchez, D. Bejarano-Nosas, B. Teixeira-Dias, and I. Katakis, “Electrochemically actuated passive stop-go microvalves for flow control in microfluidic systems,” Microelectron. Eng. 111, 416–420 (2013).
[Crossref]

Micromachines (Basel) (1)

J. T. W. Kuo, L. Yu, and E. Meng, “Micromachined thermal flow sensors—A review,” Micromachines (Basel) 3(3), 550–573 (2012).
[Crossref]

Microsyst. Technol. (2)

R. Antony, M. S. G. Nandagopal, N. Sreekumar, and N. Selvaraju, “Detection principles and development of microfluidic sensors in the last decade,” Microsyst. Technol. 20(6), 1051–1061 (2014).
[Crossref]

H. Yu, D. Li, R. C. Roberts, K. Xu, and N. C. Tien, “A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid,” Microsyst. Technol. 19(7), 989–994 (2013).
[Crossref]

Nat. Chem. (1)

K. S. Elvira, X. Casadevall i Solvas, R. C. Wootton, and A. J. deMello, “The past, present and potential for microfluidic reactor technology in chemical synthesis,” Nat. Chem. 5(11), 905–915 (2013).
[Crossref] [PubMed]

Nature (1)

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Sci. Rep. (1)

K. Khoshmanesh, A. Almansouri, H. Albloushi, P. Yi, R. Soffe, and K. Kalantar-zadeh, “A multi-functional bubble-based microfluidic system,” Sci. Rep. 5(1), 9942 (2015).
[Crossref] [PubMed]

Science (2)

A. Terray, J. Oakey, and D. W. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[Crossref] [PubMed]

M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science 288(5463), 113–116 (2000).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

L. Szekely, J. Reichert, and R. Freitag, “Non-invasive nano-flow sensor for application in micro-fluidic systems,” Sens. Actuators A Phys. 113(1), 48–53 (2004).
[Crossref]

Sens. Actuators B Chem. (1)

W. Xu, L. L. Wu, Y. Zhang, H. Xue, G.-P. Li, and M. Bachman, “A vapor based microfluidic flow regulator,” Sens. Actuators B Chem. 142(1), 355–361 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Proposed bubble on fiber (BoF) as both thermal flow sensor and flow controller.
Fig. 2
Fig. 2 Microscope images of the bubble generation on the gold-coated fiber facet by injecting the heating laser at λ = 980 nm with the power of 20 mW.
Fig. 3
Fig. 3 (a) Temporal fluctuations in the bubble diameter of the fabricated BoFs before and after PID-algorithm-based servo-control. (b) Reflection spectrum of BoFs with the diameters of 13 μm, 30 μm and 80 μm.
Fig. 4
Fig. 4 Water temperature versus the heating laser power for BoFs with various bubble diameters.
Fig. 5
Fig. 5 Simulated temperature distribution around the BoF in a microfluidic channel with the water flow rate of (a) 0 mm/s and (b) 5mm/s; (c) Average temperature over the BoF surface as a function of the flow rate in the channel.
Fig. 6
Fig. 6 Schematic of the experimental setup for measuring the flow rate using a BoF in a microfluidic channel.
Fig. 7
Fig. 7 (a) Dynamic response of the BoF with a bubble diameter of 40 μm to the flow rates in repeated cycles; (b) Heating laser power as a function of the flow rate.
Fig. 8
Fig. 8 (a) Heating laser power as a function of the flow rate for BoFs with various bubble diameters. (b) Dependence of the sensitivity and the threshold flow rates on the bubble diameter.
Fig. 9
Fig. 9 The relationship between the heating power for the BoF stabilization and the liquid pressure. Inset: temporal evolution of the heating power during a continuous pressure drop.
Fig. 10
Fig. 10 (a) Schematic and (b) microscopic image of a microfluidic chip incorporating a BoF; (c-f) The flow patterns in the channel at different bubble diameters; (g) Ratio of the water/red ink flow rate as a function of the bubble diameter.

Metrics