Abstract

In nonlinear microscopy, phase-only spatial light modulators (SLMs) allow achieving simultaneous two-photon excitation and fluorescence emission from specific region-of-interests (ROIs). However, as iterative Fourier transform algorithms (IFTAs) can only approximate the illumination of selected ROIs, both image formation and/or signal acquisition can be largely affected by the spatial irregularities of the illumination patterns and the speckle noise. To overcome these limitations, we propose an alternative complex illumination method (CIM) able to generate simultaneous excitation of large-area ROIs with full control over the amplitude and phase of light and reduced speckle. As a proof-of-concept we experimentally demonstrate single-photon and second harmonic generation (SHG) with structured illumination over large-area ROIs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-iterative phase hologram computation for low speckle holographic image projection

Deniz Mengu, Erdem Ulusoy, and Hakan Urey
Opt. Express 24(5) 4462-4476 (2016)

Vortex-free phase profiles for uniform patterning with computer-generated holography

Marc Guillon, Benoît C. Forget, Amanda J. Foust, Vincent De Sars, Monika Ritsch-Marte, and Valentina Emiliani
Opt. Express 25(11) 12640-12652 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
    [Crossref] [PubMed]
  2. M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
    [Crossref] [PubMed]
  3. M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
    [Crossref] [PubMed]
  4. M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
    [Crossref] [PubMed]
  5. A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A 17(7), 1192–1201 (2000).
    [Crossref] [PubMed]
  6. S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Fluorescence-lifetime imaging with a multifocal two-photon microscope,” Opt. Lett. 29(24), 2884–2886 (2004).
    [Crossref] [PubMed]
  7. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
    [Crossref] [PubMed]
  8. L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
    [Crossref] [PubMed]
  9. M. D. Peterson, P. L. Hayes, I. S. Martinez, L. C. Cass, J. L. Achtyl, E. A. Weiss, and F. M. Geiger, “Second harmonic generation imaging with a kHz amplifier [Invited],” Opt. Mater. Express 1(1), 57–66 (2011).
    [Crossref]
  10. V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
    [Crossref] [PubMed]
  11. Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
    [Crossref] [PubMed]
  12. O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
    [Crossref] [PubMed]
  13. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
    [Crossref] [PubMed]
  14. I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11(14), 1695–1701 (2003).
    [Crossref] [PubMed]
  15. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [Crossref]
  16. S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
    [Crossref] [PubMed]
  17. D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
    [Crossref] [PubMed]
  18. A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
    [Crossref] [PubMed]
  19. S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
    [Crossref] [PubMed]
  20. N. Accanto, C. Molinier, D. Tanese, E. Ronzitti, Z. L. Newman, C. Wyart, E. Isacoff, E. Papagiakoumou, and V. Emiliani, “Multiplexed temporally focused light shaping for high-resolution multi-cell targeting,” Optica 5(11), 1478–1491 (2018).
    [Crossref]
  21. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).
  22. T. Aharoni and S. Shoham, “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).
    [Crossref] [PubMed]
  23. R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
    [Crossref] [PubMed]
  24. O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
    [Crossref]
  25. M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20(20), 22334–22343 (2012).
    [Crossref] [PubMed]
  26. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  27. R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J. P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express 18(22), 23218–23225 (2010).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

2016 (3)

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

2015 (2)

2014 (2)

O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
[Crossref] [PubMed]

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

2013 (2)

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

M. D. Peterson, P. L. Hayes, I. S. Martinez, L. C. Cass, J. L. Achtyl, E. A. Weiss, and F. M. Geiger, “Second harmonic generation imaging with a kHz amplifier [Invited],” Opt. Mater. Express 1(1), 57–66 (2011).
[Crossref]

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

2010 (3)

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J. P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express 18(22), 23218–23225 (2010).
[Crossref] [PubMed]

2008 (2)

2004 (1)

2003 (1)

2000 (1)

1997 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Accanto, N.

Achtyl, J. L.

Aharoni, T.

T. Aharoni and S. Shoham, “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).
[Crossref] [PubMed]

Allen, W. E.

Andalman, A. S.

Anselmi, F.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Araya, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Assayag, O.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

Bäumner, R.

Bègue, A.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Berndt, A.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

Bito, H.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Bonacina, L.

Bovetti, S.

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

Bradley, J.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

Brinkman, B. C.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Butko, M. T.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Canepari, M.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Carbonell-Leal, M.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Cass, L. C.

Chang, C.-Y.

Chang, N.-S.

Charpak, S.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

Chen, S.-J.

Cheng, L.-C.

Cho, K.-C.

Conti, R.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

Dantus, M.

Davidson, T. J.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

De Sars, V.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[Crossref] [PubMed]

Deisseroth, K.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Dela Cruz, J.

Donate-Buendia, C.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Dong, C. Y.

Drobizhev, M.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Ducros, M.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

Egner, A.

Emiliani, V.

N. Accanto, C. Molinier, D. Tanese, E. Ronzitti, Z. L. Newman, C. Wyart, E. Isacoff, E. Papagiakoumou, and V. Emiliani, “Multiplexed temporally focused light shaping for high-resolution multi-cell targeting,” Optica 5(11), 1478–1491 (2018).
[Crossref]

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[Crossref] [PubMed]

Enderlein, J.

Engström, D.

Extermann, J.

Fellin, T.

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

Fernandez-Alonso, M.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Fontaine-Aupart, M. P.

Fricke-Begemann, T.

Geiger, F. M.

Georges, P.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Gleeson, J. G.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Glückstad, J.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Goksör, M.

Goulam Houssen, Y.

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

Guillon, M.

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

Hayes, P. L.

Hell, S. W.

Hertzberg, Y.

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

Hong, A.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Ingaramo, M.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Inoue, M.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Isacoff, E.

Isacoff, E. Y.

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Jennings, J. H.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

Kauvar, I.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Kim, C. K.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Lancis, J.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
[Crossref] [PubMed]

Lee, S. Y.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Lerner, T. N.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Lévêque-Fort, S.

Lin, C.-Y.

Lozovoy, V.

Makarov, N. S.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Marowsky, G.

Marshel, J. H.

Martinez, I. S.

Martinez-Leon, L.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

Mendoza-Yero, O.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, “Encoding complex fields by using a phase-only optical element,” Opt. Lett. 39(7), 1740–1743 (2014).
[Crossref] [PubMed]

Milberg, O.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Minguez-Vega, G.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Mínguez-Vega, G.

Molinier, C.

Naor, O.

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

Newman, Z. L.

Nikolenko, V.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Oron, D.

Papagiakoumou, E.

Pastirk, I.

Patterson, G. H.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Perez-Vizcaino, J.

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

Persson, M.

Peterka, D. S.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Peterson, M. D.

Pichamoorthy, N.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Ramakrishnan, C.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

Rebane, A.

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

Roger, G.

Ronzitti, E.

Rozsa, B.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Schwaighofer, A.

Shoham, S.

T. Aharoni and S. Shoham, “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).
[Crossref] [PubMed]

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

Shroff, H.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Tanese, D.

N. Accanto, C. Molinier, D. Tanese, E. Ronzitti, Z. L. Newman, C. Wyart, E. Isacoff, E. Papagiakoumou, and V. Emiliani, “Multiplexed temporally focused light shaping for high-resolution multi-cell targeting,” Optica 5(11), 1478–1491 (2018).
[Crossref]

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Volovick, A.

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

Walowicz, K.

Wawrzusin, P.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Weigert, R.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Weiss, E. A.

Weng, J.-Y.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Wetzstein, G.

Wolf, J. P.

Woodruff, A.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Wyart, C.

Xu, C.

Yamaguchi, I.

Yang, S. J.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Yen, W.-C.

York, A. G.

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Young, N. P.

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

Yuste, R.

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Zampini, V.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Zecevic, D.

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

Zhang, T.

BMC Biotechnol. (1)

M. T. Butko, M. Drobizhev, N. S. Makarov, A. Rebane, B. C. Brinkman, and J. G. Gleeson, “Simultaneous multiple-excitation multiphoton microscopy yields increased imaging sensitivity and specificity,” BMC Biotechnol. 11(1), 20 (2011).
[Crossref] [PubMed]

Cold Spring Harb. Protoc. (1)

V. Nikolenko, D. S. Peterka, R. Araya, A. Woodruff, and R. Yuste, “Spatial light modulator microscopy,” Cold Spring Harb. Protoc. 2013(12), 1132–1141 (2013).
[Crossref] [PubMed]

Front. Cell. Neurosci. (1)

R. Conti, O. Assayag, V. de Sars, M. Guillon, and V. Emiliani, “Computer generated holography with intensity-graded patterns,” Front. Cell. Neurosci. 10, 236 (2016).
[Crossref] [PubMed]

J. Disp. Technol. (1)

O. Mendoza-Yero, G. Minguez-Vega, L. Martinez-Leon, M. Carbonell-Leal, M. Fernandez-Alonso, C. Donate-Buendia, J. Perez-Vizcaino, and J. Lancis, “Diffraction-based phase calibration of spatial light modulators with binary phase Fresnel lenses,” J. Disp. Technol. 12(10), 1027–1032 (2016).
[Crossref]

J. Neural Eng. (1)

Y. Hertzberg, O. Naor, A. Volovick, and S. Shoham, “Towards multifocal ultrasonic neural stimulation: pattern generation algorithms,” J. Neural Eng. 7(5), 056002 (2010).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

S. Bovetti and T. Fellin, “Optical dissection of brain circuits with patterned illumination through the phase modulation of light,” J. Neurosci. Methods 241, 66–77 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Nat. Methods (2)

C. K. Kim, S. J. Yang, N. Pichamoorthy, N. P. Young, I. Kauvar, J. H. Jennings, T. N. Lerner, A. Berndt, S. Y. Lee, C. Ramakrishnan, T. J. Davidson, M. Inoue, H. Bito, and K. Deisseroth, “Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain,” Nat. Methods 13(4), 325–328 (2016).
[Crossref] [PubMed]

E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010).
[Crossref] [PubMed]

Neurophotonics (2)

D. Tanese, J.-Y. Weng, V. Zampini, V. De Sars, M. Canepari, B. Rozsa, V. Emiliani, and D. Zecevic, “Imaging membrane potential changes from dendritic spines using computer-generated holography,” Neurophotonics 4(3), 031211 (2017).
[Crossref] [PubMed]

T. Aharoni and S. Shoham, “Phase-controlled, speckle-free holographic projection with applications in precision optogenetics,” Neurophotonics 5(2), 025004 (2018).
[Crossref] [PubMed]

Opt. Express (7)

R. Bäumner, L. Bonacina, J. Enderlein, J. Extermann, T. Fricke-Begemann, G. Marowsky, and J. P. Wolf, “Evanescent-field-induced second harmonic generation by noncentrosymmetric nanoparticles,” Opt. Express 18(22), 23218–23225 (2010).
[Crossref] [PubMed]

M. Persson, D. Engström, and M. Goksör, “Reducing the effect of pixel crosstalk in phase only spatial light modulators,” Opt. Express 20(20), 22334–22343 (2012).
[Crossref] [PubMed]

A. Jesacher, C. Maurer, A. Schwaighofer, S. Bernet, and M. Ritsch-Marte, “Near-perfect hologram reconstruction with a spatial light modulator,” Opt. Express 16(4), 2597–2603 (2008).
[Crossref] [PubMed]

S. J. Yang, W. E. Allen, I. Kauvar, A. S. Andalman, N. P. Young, C. K. Kim, J. H. Marshel, G. Wetzstein, and K. Deisseroth, “Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing,” Opt. Express 23(25), 32573–32581 (2015).
[Crossref] [PubMed]

I. Pastirk, J. Dela Cruz, K. Walowicz, V. Lozovoy, and M. Dantus, “Selective two-photon microscopy with shaped femtosecond pulses,” Opt. Express 11(14), 1695–1701 (2003).
[Crossref] [PubMed]

E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008).
[Crossref] [PubMed]

L.-C. Cheng, C.-Y. Chang, C.-Y. Lin, K.-C. Cho, W.-C. Yen, N.-S. Chang, C. Xu, C. Y. Dong, and S.-J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express 20(8), 8939–8948 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Opt. Mater. Express (1)

Optica (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 237–246 (1972).

Proc. Natl. Acad. Sci. U.S.A. (2)

M. Ducros, Y. Goulam Houssen, J. Bradley, V. de Sars, and S. Charpak, “Encoded multisite two-photon microscopy,” Proc. Natl. Acad. Sci. U.S.A. 110(32), 13138–13143 (2013).
[Crossref] [PubMed]

M. Ingaramo, A. G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H. Shroff, and G. H. Patterson, “Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue,” Proc. Natl. Acad. Sci. U.S.A. 111(14), 5254–5259 (2014).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       Interference pattern evolution after exciting SHG from two micrometric and separated ROIs and setting a phase shift between them with a phase-only SLM. The light propagating from the ROIs interacts with one another and generates interference fringes.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical setup. Complex illumination method (CIM) implemented by means of two optical modules: complex field encoding module (CFEM, blue region) used to generate the arbitrary complex patterns, and optical demagnifying module (ODM, green region) used to adjust the size of the pattern at the sample plane. In order to properly set the position of the utilized CGHs, a delay line is added at the right part of the setup. Bottom part shows an image of the biological specimen (water flea) used to define a ROI.
Fig. 2
Fig. 2 Generic example: measured amplitude and phase of a given complex field at the SLM (top) and sample (bottom) planes. Related CIM images and measured interferograms are also shown (central part). Scales are included as insets at the right-bottom part of each irradiance pattern.
Fig. 3
Fig. 3 Theoretical and experimental amplitude-only irradiance patterns at the SLM and sample planes, respectively. Scales are included as insets at the right-bottom part of each irradiance pattern. In the first column, corresponding phase elements, represented with a pixel cell of 6x6, are also shown.
Fig. 4
Fig. 4 Two examples of compensation for real optical aberrations with the CIM. The measured amplitude patterns are included as insets at the left-bottom parts of each image.
Fig. 5
Fig. 5 Experimental images of second harmonic emission from a Daphnia ’eye ROI after employed both CGHs and our illumination method. Scales and central irradiance profiles are included as insets at the left-bottom and right-bottom parts of each irradiance pattern, respectively.
Fig. 6
Fig. 6 Interference pattern dependence on the phase set at one ROI. The spatial shape of the selected ROIs are indicated with different colors and included as insets at the right-top part of each image.
Fig. 7
Fig. 7 Defocusing image after exciting SHG from two micrometric and separated ROIs with a set phase shift between them. The spatial shape of the selected ROIs are indicated with different colors and included as insets at the right-top part of the image. The light propagating from the ROIs interacts with one another and generates interference fringes (see Visualization 1).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U(x,y)=B e iθ( x,y ) +B e iϑ( x,y ) .
θ( x,y )=φ( x,y )+ cos 1 [A(x,y)/ A max ].
ϑ(x,y)=φ(x,y) cos 1 [ A(x,y)/ A max ].
α(x,y)= M 1 (x,y)θ(x,y)+ M 2 (x,y)ϑ(x,y).
M 1 (x,y) e iθ(x,y) + M 2 (x,y) e iϑ(x,y) = e iα(x,y) .

Metrics