Abstract

Efficient high-speed nanoscale optical sources are required for low-power next-generation data communication. Here we propose an integrated antenna-LED on a single-mode optical waveguide. By leveraging inverse design optimization, we achieved a waveguide coupling efficiency of 94% and an antenna efficiency of 64%, while maintaining a high average enhancement of 144 – potentially enabling >100GHz direct modulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient unidirectional and broadband vertical-emitting optical coupler assisted by aperture-coupled nanopatch antenna array

Y. S. Zeng, S. W. Qu, C. Wang, B. J. Chen, and C. Chan
Opt. Express 27(7) 9941-9954 (2019)

Planar antenna designs for efficient coupling between a single emitter and an optical fiber

Navid Soltani and Mario Agio
Opt. Express 27(21) 30830-30841 (2019)

Design of a suspended germanium micro-antenna for efficient fiber-chip coupling in the long-wavelength mid-infrared range

A. Sánchez-Postigo, A. Ortega-Moñux, D. Pereira-Martín, Í. Molina-Fernández, R. Halir, P. Cheben, J. Soler Penadés, M. Nedeljkovic, G. Z. Mashanovich, and J. G. Wangüemert-Pérez
Opt. Express 27(16) 22302-22315 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  2. K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28, 124002 (2013).
    [Crossref]
  3. M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
    [Crossref] [PubMed]
  4. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref] [PubMed]
  5. M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
    [Crossref]
  6. M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
    [Crossref]
  7. S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
    [Crossref]
  8. K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
    [Crossref] [PubMed]
  9. J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
    [Crossref]
  10. M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15, 3329–3333 (2015).
    [Crossref] [PubMed]
  11. V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
    [Crossref] [PubMed]
  12. M.-K. Kim, Z. Li, K. Huang, R. Going, M. C. Wu, and H. Choo, “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express 21, 25796–25804 (2013).
    [Crossref]
  13. Y.-H. Jin, B. J. Park, and M.-K. Kim, “Extreme field enhancement in nano-gap plasmonic cavity via 90% efficient coupling with silicon waveguide,” Opt. Express 24, 25540–25547 (2016).
    [Crossref]
  14. A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018).
    [Crossref]
  15. B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
    [Crossref]
  16. L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
    [Crossref] [PubMed]
  17. S. Bhargava and E. Yablonovitch, “Lowering HAMR near-field transducer temperature via inverse electromagnetic design,” IEEE Trans. Magn. 51, 1–7 (2015).
    [Crossref]
  18. A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
    [Crossref]
  19. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
    [Crossref]
  20. A. Michaels and E. Yablonovitch, “Leveraging continuous material averaging for inverse electromagnetic design,” Opt. Express 26, 31717–31737 (2018).
    [Crossref]
  21. J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20, 7221–7236 (2012).
    [Crossref] [PubMed]
  22. Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
    [Crossref]
  23. N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
    [Crossref]
  24. N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.
  25. H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3, 1943–1951 (2016).
    [Crossref]
  26. E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
    [Crossref]

2018 (3)

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018).
[Crossref]

A. Michaels and E. Yablonovitch, “Leveraging continuous material averaging for inverse electromagnetic design,” Opt. Express 26, 31717–31737 (2018).
[Crossref]

2017 (2)

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

2016 (3)

2015 (7)

S. Bhargava and E. Yablonovitch, “Lowering HAMR near-field transducer temperature via inverse electromagnetic design,” IEEE Trans. Magn. 51, 1–7 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15, 3329–3333 (2015).
[Crossref] [PubMed]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

2014 (1)

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

2013 (3)

2012 (2)

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20, 7221–7236 (2012).
[Crossref] [PubMed]

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

1986 (1)

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Andrade, N. M.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Bhargava, S.

S. Bhargava and E. Yablonovitch, “Lowering HAMR near-field transducer temperature via inverse electromagnetic design,” IEEE Trans. Magn. 51, 1–7 (2015).
[Crossref]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref]

Birindelli, S.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Brongersma, M. L.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Choo, H.

Desai, S. B.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

Ding, K.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28, 124002 (2013).
[Crossref]

Ding, Y.

Doeleman, H. M.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3, 1943–1951 (2016).
[Crossref]

Dolores-Calzadilla, V.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Eggleston, M. S.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15, 3329–3333 (2015).
[Crossref] [PubMed]

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

Eisele, H.

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Elesin, Y.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

Emmerling, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Fiore, A.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Fortuna, S. A.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

Frandsen, L. H.

Frellsen, L. F.

Going, R.

Han, K.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

Harris, J. S.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Hecht, B.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Heiss, D.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Higuera-Rodriguez, A.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Hooten, S.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Huang, K.

Huang, K. C. Y.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Huo, Y.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Javey, A.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

Jensen, J. S.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

Jin, Y.-H.

Kamp, M.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kern, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Kim, M.-K.

Koenderink, A. F.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3, 1943–1951 (2016).
[Crossref]

Kullock, R.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Lalau-Keraly, C. M.

Lazarov, B. S.

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

Li, Z.

Lu, J.

Madhvapathy, S.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

Menon, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Messer, K.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

Michaels, A.

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Miller, O. D.

Ning, C. Z.

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28, 124002 (2013).
[Crossref]

Pagliano, F.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Park, B. J.

Pelton, M.

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

Petykiewicz, J.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

Piggott, A. Y.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

Polson, R.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Prangsma, J.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

Romeira, B.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Sarmiento, T.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Schweizer, H.

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Seo, M.-K.

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

Shen, B.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Sigmund, O.

L. F. Frellsen, Y. Ding, O. Sigmund, and L. H. Frandsen, “Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides,” Opt. Express 24, 16866–16873 (2016).
[Crossref] [PubMed]

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

Smit, M. K.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Streubel, K.

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Su, L.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

van Veldhoven, P. J.

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

Verhagen, E.

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3, 1943–1951 (2016).
[Crossref]

Vuckovic, J.

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

J. Lu and J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20, 7221–7236 (2012).
[Crossref] [PubMed]

Wang, P.

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Weimann, G.

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Wu, M. C.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15, 3329–3333 (2015).
[Crossref] [PubMed]

M.-K. Kim, Z. Li, K. Huang, R. Going, M. C. Wu, and H. Choo, “Engineering of metal-clad optical nanocavity to optimize coupling with integrated waveguides,” Opt. Express 21, 25796–25804 (2013).
[Crossref]

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

Xiao, J.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

Yablonovitch, E.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

A. Michaels and E. Yablonovitch, “Inverse design of near unity efficiency perfectly vertical grating couplers,” Opt. Express 26, 4766–4779 (2018).
[Crossref]

A. Michaels and E. Yablonovitch, “Leveraging continuous material averaging for inverse electromagnetic design,” Opt. Express 26, 31717–31737 (2018).
[Crossref]

S. Bhargava and E. Yablonovitch, “Lowering HAMR near-field transducer temperature via inverse electromagnetic design,” IEEE Trans. Magn. 51, 1–7 (2015).
[Crossref]

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21, 21693–21701 (2013).
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

Zhang, L.

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

Zhang, X.

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

Zielinski, E.

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

ACS Photonics (2)

M. S. Eggleston, S. B. Desai, K. Messer, S. A. Fortuna, S. Madhvapathy, J. Xiao, X. Zhang, E. Yablonovitch, A. Javey, and M. C. Wu, “Ultrafast spontaneous emission from a slot-antenna coupled WSe2 monolayer,” ACS Photonics 5, 2701–2705 (2018).
[Crossref]

H. M. Doeleman, E. Verhagen, and A. F. Koenderink, “Antenna–cavity hybrids: matching polar opposites for Purcell enhancements at any linewidth,” ACS Photonics 3, 1943–1951 (2016).
[Crossref]

IEEE Trans. Magn. (1)

S. Bhargava and E. Yablonovitch, “Lowering HAMR near-field transducer temperature via inverse electromagnetic design,” IEEE Trans. Magn. 51, 1–7 (2015).
[Crossref]

J. Appl. Phys. (1)

E. Zielinski, H. Schweizer, K. Streubel, H. Eisele, and G. Weimann, “Excitonic transitions and exciton damping processes in InGaAs/InP,” J. Appl. Phys. 59, 2196–2204 (1986).
[Crossref]

Nano Lett. (1)

M. S. Eggleston and M. C. Wu, “Efficient coupling of an antenna-enhanced nanoLED into an integrated InP waveguide,” Nano Lett. 15, 3329–3333 (2015).
[Crossref] [PubMed]

Nat. Commun. (3)

V. Dolores-Calzadilla, B. Romeira, F. Pagliano, S. Birindelli, A. Higuera-Rodriguez, P. J. van Veldhoven, M. K. Smit, A. Fiore, and D. Heiss, “Waveguide-coupled nanopillar metal-cavity light-emitting diodes on silicon,” Nat. Commun. 8, 14323 (2017).
[Crossref] [PubMed]

K. C. Y. Huang, M.-K. Seo, Y. Huo, T. Sarmiento, J. S. Harris, and M. L. Brongersma, “Antenna electrodes for controlling electroluminescence,” Nat. Commun. 3, 1005 (2012).
[Crossref] [PubMed]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Pelton, “Modified spontaneous emission in nanophotonic structures,” Nat. Photonics 9, 427–435 (2015).
[Crossref]

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp, and B. Hecht, “Electrically driven optical antennas,” Nat. Photonics 9, 582–586 (2015).
[Crossref]

B. Shen, P. Wang, R. Polson, and R. Menon, “An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint,” Nat. Photonics 9, 378–382 (2015).
[Crossref]

Opt. Express (7)

Photonics Nanostructures - Fundamentals Appl. (1)

Y. Elesin, B. S. Lazarov, J. S. Jensen, and O. Sigmund, “Time domain topology optimization of 3d nanophotonic devices,” Photonics Nanostructures - Fundamentals Appl. 12, 23–33 (2014).
[Crossref]

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and M. C. Wu, “Optical antenna enhanced spontaneous emission,” Proc. Natl. Acad. Sci. U.S.A. 112, 1704–1709 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, “Fabrication-constrained nanophotonic inverse design,” Sci. Rep. 7, 1786 (2017).
[Crossref]

Semicond. Sci. Technol. (1)

K. Ding and C. Z. Ning, “Fabrication challenges of electrical injection metallic cavity semiconductor nanolasers,” Semicond. Sci. Technol. 28, 124002 (2013).
[Crossref]

Other (3)

S. A. Fortuna, M. S. Eggleston, K. Messer, E. Yablonovitch, and M. C. Wu, “Large spontaneous emission rate enhancement from an electrically-injected nanoLED coupled to an optical antenna,” in 2015 IEEE Photonics Conference (IPC), (2015), pp. 172–173.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 IEEE Photonics Conference (IPC), (2017), pp. 649–650.
[Crossref]

N. M. Andrade, S. A. Fortuna, K. Han, S. Hooten, E. Yablonovitch, and M. C. Wu, “Efficient and broadband single-mode waveguide coupling of electrically injected optical antenna based nanoLED,” in 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems Steep Transistors Workshop (E3S), (2017), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Vertical cross section schematic and (b) power flow of optical antenna-LED on a bulk InP substrate. The XZ cross section depicts the LED length and height.
Fig. 2
Fig. 2 Cross section, power flow, and waveguide coupling efficiency to the fundamental mode (ηWC) for (a) antenna-LED on single-mode InP waveguide and SiO2 ridge, (b) antenna-LED on single-mode InP waveguide with metal wrapped around waveguide facet, and (c) antenna-LED on single-mode InP tapered waveguide with metal wrapped around waveguide facet and sidewalls (see Fig. 3(a) for perspective view, Fig. 4(b) for top view cross section). See Appendix: Field profiles for the Ex and Ey field profiles of the mode in the InP waveguide.
Fig. 3
Fig. 3 (a) Perspective view of tapered waveguide coupler with a waveguide height of 180nm and width of 550nm on a 500nm tall SiO2 ridge, and (b) enhancement, antenna efficiency, and waveguide coupling efficiency spectra.
Fig. 4
Fig. 4 (a) Cross section schematic (XZ) of tapered waveguide coupler showing dashed cutline, and (b) top view XY cross section of waveguide along dashed cutline. (c) XY cross section of coupler after optimization, showing perturbations to Ag-InP boundary. Note (b) and (c) also show the projection of the LED base.
Fig. 5
Fig. 5 Enhancement, antenna efficiency, waveguide coupling efficiency spectra and top view XY cross sections for (a) single frequency optimization and (b) multi frequency optimization. For reference, the LED material spectrum [L(ω)] between its 50% power points is shown by the gray shaded region.
Fig. 6
Fig. 6 (a) Avoided crossing between the optical antenna resonance and the inverse design coupler resonance. For reference, dashed black and green lines show independent resonances of the antenna-LED on a bulk InP substrate and the coupler section as a function of LED length, respectively. Enhancement spectra for LED lengths of (b) 110nm and (c) 122nm.
Fig. 7
Fig. 7 Dashed black and solid red lines show the experimental non-enhanced material spectrum [L(ω)] and the simulated enhancement spectrum [F(ω)] of the cavity-backed slot antenna on a bulk InP substrate, respectively.
Fig. 8
Fig. 8 Ex and Ey field profiles for (a) antenna-LED on single-mode InP waveguide and SiO2 ridge, (b) antenna-LED on single-mode InP waveguide with metal wrapped around waveguide facet, and (c) antenna-LED on single-mode InP tapered waveguide with metal wrapped around waveguide facet and sidewalls.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F avg = 1 2 × 0.79 × F ( ω ) L ( ω ) d ω L ( ω ) d ω
η antenna ( ω ) = P total ( ω ) P metal loss ( ω ) P total ( ω )
η WC ( ω ) = 1 η antenna ( ω ) P fundamental mode ( ω ) P total ( ω )
P total ( ω ) = P fundamental mode ( ω ) + P scattering ( ω ) + P metal loss ( ω )
η antenna = 0.96 × η antenna ( ω ) F ( ω ) L ( ω ) d ω F ( ω ) L ( ω ) d ω
η WC = η WC ( ω ) η antenna ( ω ) F ( ω ) L ( ω ) d ω η antenna ( ω ) F ( ω ) L ( ω ) d ω
P fundamental mode = F avg η antenna η WC ω B 0 N 2 V
f 3 dB = 2 F avg B 0 N 2 π
max θ ω c ω T ω ( x , r ) : Radius of Curvature 100 nm

Metrics